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Abstract: This article reviews the pharmacokinetics of heroin after intravenous, oral, intranasal, intramuscular and rectal

application and after inhalation in humans, with a special focus on heroin maintenance therapy in heroin dependent

patients. In heroin maintenance therapy high doses pharmaceutically prepared heroin (up to 1000 mg/day) are prescribed

to chronic heroin dependents, who do not respond to conventional interventions such as methadone maintenance

treatment. Possible drug-drug interactions with the hydrolysis of heroin into 6-monoacetylmorphine and morphine, the

glucuronidation of morphine and interactions with drug transporting proteins are described. Since renal and hepatic

impairment is common in the special population of heroin dependent patients, specific attention was paid on the impact of

renal and hepatic impairment. Hepatic impairment did not seem to have a clinically relevant effect on the

pharmacokinetics of heroin and its metabolites. However, some modest effects of renal impairment have been noted, and

therefore control of the creatinine clearance during heroin-assisted treatment seems recommendable.

INTRODUCTION

Heroin (diacetylmorphine, (5 ,6 )-7,8-Didehydro-4,5-
epoxy-17-methylmorphinan-3,6-diol diacetate (ester),
diamorphine or Diagesil®) is a semi-synthetic morphine
derivative and a powerful opioid analgesic. Apart from its
use in pain management, the medical prescription of pharma-
ceutically prepared heroin is also applied in treatment of
chronic heroin dependents, who do not respond to conven-
tional interventions such as methadone and buprenorphine
maintenance treatment [1,2]. Heroin-assisted treatment signi-
ficantly reduced the drug seeking behaviour, and consequently
led to significant improvement of physical health, mental
status and social functioning of heroin dependent patients[3-
5]. Heroin-assisted maintenance treatment is currently
available in the UK, Switzerland and The Netherlands, for
patients who suffered from severe heroin dependency for
many years and where alternative treatments like methadone
maintenance therapy have failed. In some other Western-
European countries and Canada trials with heroin-assisted
treatment are considered [6]. At the start of heroin-assisted
treatment, the initial heroin dose is based on the estimated
tolerance level of the individual patient. In the course of the
treatment, the prescribed heroin dose is based on individual
titration, taking the clinical effects and the personal response
of the patients as the main dose defining indicators. In
responders to heroin-assisted treatment, the prescription of
heroin will be continued for several months or even years
[7]. Unexpected changes in concentrations of heroin and its
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biological active metabolites in plasma, however, can induce
withdrawal symptoms or toxic adverse events, and must
therefore be avoided. Furthermore, heroin can be administered
by different routes and during treatment alternative routes of
administration may be used. In this article the consequences
of alternative heroin administration methods for the
pharmacokinetics of heroin are discussed.

Another cause of changing plasma levels of heroin is the
concurrent use of other medications. Heroin addicted patients
form a population at risk for many other disorders, and
frequently medication other than heroin such as tuber-
culostatics, HIV medication, antidepressants and neuroleptics
are prescribed in a heroin-assisted treatment setting.
Furthermore, heroin dependent patients are often poly-drug
users. The use of cocaine, alcohol and “street” benzodia-
zepines is common during heroin-assisted treatment trials in

outpatient clinical settings.

Both the liver and kidney are involved in heroin meta-
bolism and excretion. Hepatic impairment e.g. due to viral
hepatitis and renal damage due to injection of contaminants

are very common in this special population [8,9].

The aim of this manuscript is to review the pharma-
cokinetics of heroin and its metabolites and the influence of
the route of administration, drug-interactions and the presence
of liver and kidney impairment on the pharmacokinetics. The
review starts with a summary of the literature on the

chemical properties of heroin and the metabolic enzymes.

For other reviews concerning the pharmacokinetics of
heroin we refer to Sawynok et al. and Kendall and Latter
[10,11].
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METHOD

A Medline search was performed on articles from the
period 1960 till March 2005. For review of the heroin
metabolism, search terms like heroin (diacetylmorphine or
diamorphine), (pharmaco)-kinetics and esterase were
applied.

For the study on the influences of covariates on the meta-
bolism of heroin and its primer metabolites we used search
terms like interaction, 6-(mono)acetylmorphine, morphine,
glucuronide, uridine diphosphate glucuronosyl transferase
(UGT), P-glycoprotein and OATP (Organic Anion Trans-
porting Polypeptides), age, gender, renal and hepatic.

From relevant citations, the references were reviewed on
the usefulness for this article.

RESULTS

Chemical Properties of Heroin and its Metabolites

Heroin was developed in 1874 by A.C. Wright. Heroin
was first marketed in 1898 as an antitussive for patients with
asthma and tuberculosis [12]. In the synthesis of heroin,
morphine molecules are acetylated in an excess of acetic
anhydride at higher temperatures. Initially acetylating occurs
at position 3, the phenolic hydroxyl group of the morphine
molecule, and consecutively at position 6, the alcoholic
hydroxylgoup (see Fig. (1)) [13]. The morphine ingredient is
a natural alkaloid harvested from the latex of Papaver
somniferum poppies. Opium latex may contain many other
alkaloids like papaverine, codeine, noscapine and thebaine
[14,15].

Fig. (1). Molecule structure of heroin.

The chemical addition of the ester groups renders
lipophilicity [16,17]. Therefore, heroin may pass the blood-
brain-barrier much faster than its precursor morphine
[18,19]. This contributes to a more intense pharmacodynamic
effect with a more immediate onset of heroin compared to
morphine. However, opioid receptors are stereo-specific and
heroin shows a lower opioid receptor affinity than its
metabolites that lack conjugates at the 3-hydroxyl group,
such as 6-monoacetylmorphine, morphine, and morphine-6-
glucuronide (M6G) [20,21]. Therefore, heroin is often
considered as a pro-drug that mainly acts by its metabolites
[20,22].

The ionisation constant (pKa) of heroin is 7.6. At
physiologic pH on average 40% of heroin will be in a non-
ionised form and therefore accessible for membrane-transport.
In comparison, morphine has a pKa of 9.4. The binding
capacity of heroin to serum albumin or erythrocytes is
comparable to morphine, namely 20-40% [23].

The heroin ester bonds are rapidly hydrolysed in aqueous
solution or in plasma, although stability is improved at pH
3.5-5.2 and at temperatures below 4°C [24,25].

Metabolism

Metabolism of heroin is visualised in Fig. (2). In human
plasma, heroin is rapidly hydrolysed to 6-monoacetyl-
morphine and finally into morphine. Thereafter, glucuronides
are conjugated to the 3- and 6-positions of morphine.
Morphine-3-gluronide (M3G) is the major metabolite (M6G/
M3G ratio approximately 0.15) [26]. Morphine-glucuronides
are hydrophylic compounds, that are mainly excreted in urine,
and in minor quantities in bile. After intravenous adminis-
tration, about 70% of the total heroin dose is recovered in
urine, mainly as conjugated morphine (55%) [27,28]. Other
metabolites that were found in minor quantities in human
urine after heroin intake are normorphine-glucuronide,
codeine, morphine-3-6-diglucuronide and morphine-3-
ethersulphate [29-33].

Fig. (2). Heroin metabolism.

Metabolic Enzymes

The hydrolysis of heroin and 6-monoacetylmorphine is
catalysed by different types of esterases (Fig. 2) [34].
Esterases are abundantly present in the circulation and in
tissues.

There is a large variability in phenotypes and genotypes
of human esterases [35,36]. Heroin was not hydrolysed in
serum of a carrier of the silent plasma cholinesterase variant
gene in vitro [37]. To what extent genetic differences in
expressing esterase activity account for variability in heroin
metabolism in vivo, is not reported.

Glucuronidation is catalysed by uridine 5´-diphosphate-
glucuronosyltransferases (UGT). Primarily the UGT2B7 and
in minor quantities the UGT1A1 subtypes are involved in
morphine metabolism [37,38]. Glucuronidation of morphine
mainly occurs in the liver, but also in minor quantities in
other organs like brain, kidney and intestines [39-41]. UGT
2B7 or UGT1A1 polymorphisms did not contribute
significantly to the variability in the morphine/morphine
glucuronides ratio [38,42]. N-demethylation of morphine
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into the minor metabolite normorphine is mediated by
cytochrome P450 enzymes 3A4 and 2C8 [43].

Pharmacokinetics of Heroin

Results of pharmacokinetic studies on intravenously
administered heroin are summarised in Table 1a [31,44-46].
Pharmacokinetic parameters of heroin and its metabolites
following intramuscular administration [47,48], intranasal
snorting [47,49] or by inhalation of vapours of heated heroin
[46,50] are summarised in Table 1b.

Heroin blood levels declined very rapidly and mono-
exponentially after intravenous drug administration and
became undetectable after 10-40 min, with a lower limit of
quantification of the bioanalytical methods between 5-50
ng/mL. Estimates of the volume of distribution of heroin
varied between 60-100 L. The half-life was on average 1.3-
7.8 min. The estimates of the mean heroin clearances of 128-
1939 L/hr exceeded by far the hepatic and renal blood flow
(on average 80 L/hr and 60 L/hr, respectively in a standard
70 kg human), indicating that heroin is metabolised primarily
in peripheral tissue and in the circulation. The high clearance
of heroin from plasma is mainly due to the rapid elimination
by esterases, spontaneous hydrolysis of heroin in the basic
environment of body fluid and the extensive distribution.

In a study with high intravenous heroin doses by Rentsch
et al., heroin and its major metabolites were measured in
arterial and venous blood [45]. Initially, the arterial plasma

concentrations of heroin and 6-monoacetylmorphine were
considerably higher than venous plasma values, although
equilibrium between the arterial and venous compartments
was already achieved within 4-6 minutes.

Heroin was not recovered in urine except for one study,
where 0.13% of the heroin dose was recovered unchanged in
urine after long-term continuous intravenous administration
[28]. This finding implicates that heroin is virtually fully
converted into its metabolites before renal excretion.

Pharmacokinetics of Metabolites: 6-Monoacetylmorphine

The maximal concentrations of 6-monoacetylmorphine,
the first hydrolysis product of heroin, were already reached
0.7-2.7 min after intravenous heroin administration (see
Tables 1a and 1b). 6-Monoacetylmorphine is very lipophilic
and may have higher receptor affinity than its precursor
heroin [20]. It is considered to be responsible for all the
acute effects following heroin administration [22].

6-Monoacetylmorphine levels declined somewhat slower
than heroin levels. Estimates of half-life and clearance ranged
from 5.4 to 52 min and from 564 to 607 L/hr, respectively
(Tables 1a,1b). After heroin injection, 6-monoacetylmorphine
was detected in plasma for 1-3 hours. About 1.3% of the
total intravenous heroin dose was recovered as 6-
monoacetylmorphine in urine [28]. 6-Monoacetylmorphine
was detectable for 1.2-4.3 hrs in urine after intravenous
injection or inhalation of 2.6-20 mg heroin [51].

Table 1a. Overview of Pharmacokinetic Parameters of Heroin, its Metabolites 6-Monoacetylmorphine (6-AM) and Morphine

(MOR) (Mean ± SD or Range). In these Studies, Heroin was Administered Intravenously by Injection of a Bolus or by 3

hrs Infusion

Reference Inturrisi [44] Jenkins [50] Rentsch [45] Rook [46] Gyr [31] Girardin [48]

Application

Subjects (n)

Subject category

3hrs infusion

3

I

Bolus injection

2

II

Bolus injection

8

III

 Bolus injection

10

III

 Bolus injection

2

III

Bolus injection

8

III

Heroin Dose (mg)

Vd (L)

Cl (L/hr)

t1/2 (min)

Cmax (ng/mL)

tmax (min)

AUC ( gr/l*hr)

20-60

-

128±9

3.0±1.3

-

-

57-114

3-20

66 ± 32

685 ± 289

3.6 ± 1.4

-

-

56.5 ± 35.1

40-210

70±29

822±252

3.3±1.2

-

-

-

133-450

96±13

930±40

3.8±1.1

3119±60

-

329±40

200

60-63

1194-1920

1.3-2.2

1530-2270

-

5.2-8.8

146±48

37±16

696±168

3.0 ± 1.0

3960±1369

-

185±62

6-AM Cl/Fm (L/hr)

t1/2 (min)

Cmax (ng/mL)

tmax (min)

AUC ( g/l*hr)

t1/2 (min)

-

-

-

-

-

-

-

9.3±8.9

-

-

-

109±107.5

564±210

-

-

2.7±2.4

-

-

607±20

22±3

1731±190

-

482±20

177±10

-

46-52

4620-3400

0.7-1.5

26.3-27.2

182-287

-

3.0±1.0

5742±1837

0.3±0.1

257±12

-

MOR Cmax (ng/mL)

tmax (min)

AUC ( gr/l*hr)

-

-

-

-

-

-

-

6.4±5.8

-

829±84

7.8±2

2594±105

340-810

3.6-3.9

64.3-84.7

-

-

-

Subject category: I cancer patients, II regular heroin users after 3 days abstinence, III heroin dependents in heroin-assisted treatment.

Pharmacokinetic parameters: AUC=  area under the curve, Cl= clearance, Cmax= maximal concentration, t
1
/2 =half-life tmax= time-point Cmax, Vd= distribution volume,

Fm=fractions metabolized.
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Pharmacokinetics of Metabolites: Morphine and

Morphine -Glucuronides

The formation of morphine after heroin administration
occurred very rapidly, and maximal concentrations could be
measured between 3.6-8.0 min after heroin administration
(Tables 1a,1b). The half-life of morphine as a metabolite
generally varied between 100-280 min, which is comparable
with data from pharmacokinetic studies after morphine
administration. This indicates that the formation of morphine
from its precursor heroin is not the rate-limiting step in
metabolism of morphine after heroin administration.

However, the half-life of morphine was extremely short
in the study of Jenkins (18.8 min) [50]. Probably under-
estimation occurred since morphine plasma levels near lowest
limit of quantification were obtained after a single dose of
10.5 mg heroin by inhalation.

Data on the M3G or M6G kinetics after heroin adminis-
tration are scarce, mostly because in earlier times it was
assumed that the morphine-glucuronides were not relevant
for the pharmacodynamic action of heroin. M6G is however
a powerful opioid that after intrathecal administration
directly into the cerebrospinal fluid, significantly exceeded
the pharmacodynamic action of intrathecal administered
morphine [52]. However, M6G passes the blood-brain
barrier with more difficulty than morphine, and only after
significant accumulation of M6G in plasma a pharmaco-
dynamic effect is to be expected [53,54]. M3G lacks intrinsic

opioid activity. Based on animal experiments with M3G
administration in the brain ventricles, it has been suggested
that clinical adverse events like myoclonus and seizures after
long-term morphine treatment might be related to M3G
accumulation [55]. Epileptic insults and motoric restlessness
are often seen in heroin therapy, but whether M3G
accumulation contributes to this phenomenon has not yet
been established yet.

After heroin administration, the terminal half-lives of
morphine-glucuronides (M3G/M6G) ranged from 2.0 to 6.4
h. Tmax varied from 0.7 to 5.1 h [45,46,49], which is
comparable to the results from morphine pharmacokinetic
studies [56]. Half-life of the morphine-glucuronides did not
depend on the route of heroin administration [31,46].

The long circulation time of morphine and the glucu-
ronides is probably maintained by enterohepatic cycling
[57]. After excretion in bile, morphine-glucuronides are
hydrolysed into morphine in the digestive tract by -
glucuronidase enzymes of the colon flora. The regained
morphine molecules are available again for re-absorption
into the circulation. The contribution of enterohepatic
cycling to the total bioavailability of morphine is probably
considerable. The bioavailability of oral M6G declined with
65% when the enterohepatic cycle was interfered by
blocking of the -glucuronidase activity of the colon flora in
rodents [58]. For further details about pharmacokinetics of
morphine and morphine-glucuronides after morphine
administration, we refer to other review articles [26,56].

Table 1b. Pharmacokinetic Parameters of Heroin and Metabolites 6-Monoacetylmorphine (6-AM) and Morphine (MOR) (Mean ±

SD or Range). Heroin was Administred Intra-Muscular (im), Intranasal (in) and by Inhalation of Heroin Vapours After

Heating

Reference Skopp [47] Cone [49] Girardin [48] Jenkins [50] Rook [46]

Application

Subjects (n)

Subject category

Im

2

II

In

6

II

In

6

II

Im

6

II

Im

8

III

Inhalation

2

II

Inhalation

12

III

Heroin Dose (mg)

Vd/F (L)

Cl/F (L/hr)

t1/2 (min)

Cmax (ng/mL)

tmax (min)

AUC ( g/L*hr)

F (%)

6

-

-

5.4

45.7

4.8

0-6

-

6-12

-

-

5.4±0.6

0-44.3

4.8-15

3.7-6.5

-

6-12

-

-

4.2±1.2

-

<5

24.5

6-12

-

-

7.8±4.2

-

<5

34.5

-

233±51

-

-

-

3293±888

4±2

962±265

346 ± 146

2.6-10.5

120±94

1255±1183

3.3±1.8

-

-

-

100±94

133-450

147±16

1939±30

3.2±1.2

685±29

2

174±54

52.3±10

6-AM Cl/F*Fm (L/hr)

t1/2 (min)

Cmax (ng/mL)

tmax (min)

AUC ( gr/l*hr)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1115±426

6±2

453±88

-

5.4±1.7

-

-

-

1826±59

26±5

289±37

-

177±30

MOR t1/2 (min)

Cmax (ng/mL)

tmax (min)

AUC ( gr/l*hr)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

487±229

17±6

1455±730

18.8±14.3

-

-

-

184±15

271±30

8.0±5

1043±200

Subject category: I cancer patients, II regular heroin users after 3 days abstinence, III heroin dependents in heroin-assisted treatment

Pharmacokinetic parameters: AUC= area under the curve, Cl= clearance, Cmax= maximal concentration, F = bioavailability, t1/2  = half-life, tmax= time-point Cmax, Vd=

distribution volume, Fm = fraction metabolized.
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PHARMACOKINETIC VARIABILITY

Routes of Administration

The pharmacodynamic effects of heroin depend on the
pharmacokinetic profile of heroin and its metabolites
followin g different routes of administration. The immediate
effect of intravenous heroin is often described by heroin
dependents as a “flash”, a warm and intensively pleasant
sensation [59]. The intensity of the flash is thought to be
related to Cmax of heroin and 6-monoacetylmorphine and the
heroin absorption rate into the circulation from the
application site (tmax). The flash is followed by an euphoric,
benumbed state, which may be more related to morphine and
M6G plasma levels [31,46].

Considerable peak plasma concentrations of heroin and a
fast absorption rate were established after intranasal
application (snorting) or inhalation in the lungs (Table 1b).
The tmax varied between 2-15 min after inhalation or
intranasal administration. Because of its lipophilicity and
low ionisation grade at physiological pH, heroin is rapidly
absorbed through the mucous membranes. The intranasal
mucosa and the lung are well-perfused organs, which
contributes to a high absorption rate for lipophilic compounds.
Moreover, the alveolar-capillary bed of the lung forms a very
large area for absorption (approximately 100m

2
 in healthy

male adults) and the first pass effect by the liver is avoided
in these routes of administration. Maximal heroin concen-
trations were established within 2-5 min after intranasal
heroin use or inhalation. Plasma concentration-time profiles
demonstrated a second morphine peak in some heroin
snorters, indicating that a part of the heroin dose was
swallowed and later absorbed from the gastro-intestinal tract
[47,49]. Half-lives of heroin after intranasal administration
or inhalation were comparable to intravenous data.

In a heroin-assisted trial for the treatment of heroin-
addiction in The Netherlands, pharmaceutically prepared
heroin base was administered by smoking the agent from
aluminium foil (chasing the dragon). In this technique, the
heroin smoker keeps a lighter underneath a piece of
aluminium foil filled with heroin base and the sublimated
heroin fumes are inhaled by a straw in the mouth [60]. The
bioavailability of smoking heroin by this procedure was
estimated between 38-53% [27,46,61]. In contrast, when
cigarettes containing both tobacco and heroin were smoked,
a low recovery of 14% was found [27]. Probably
disintegration of heroin had occurred because of the
temperatures above 173°C (the melting point of heroin base)
that were achieved during taking a pull from the heroin-
cigarette [27]. The higher bioavailability of heroin after
smoking from aluminium foil was probably achieved
because the heating process could be better controlled by
manipulating the lighter. Although plasma peaks of heroin
were 2-4 times lower after smoking from aluminium foil
than after equivalent intravenous doses, the flash effect was
achieved in both administration groups [46,61].

After intramuscular administration, significantly lower
heroin peak plasma concentrations were reached than after
intravenous injection. However, heroin circulated longer
after intramuscular than after intravenous injection, because
of a sustained release of heroin into the circulation. This

resulted in AUC levels that were 3-4 times higher than
AUCs following intravenous injection of similar heroin
dosages (Table 1b ). However, this may very well be
explained by the inherent difficulties in accurately estimating
the AUC of heroin after intravenous bolus administration
[48]. Remarkably, heroin was not rapidly metabolised in the
muscular tissue.

When heroin was administered orally or rectally, no
heroin or 6-monoacetylmorphine could be detected in plasma
[31,44,48]. Consequently no “flash” was achieved after oral
administration, although a sustained period of mild euphoria
was reported. Probably hydrolysis of heroin into morphine
occurred under the alkaline conditions of the duodenum and
colon before absorption. Moreover, heroin could be subject
of the first pass effect by esterases in the liver. The
intravenous/oral AUC ratio of the metabolite morphine
varied between the 50 and 67 % in different studies, which is
comparable with oral morphine administration [31,48]. The
first pass mechanism by the liver is avoided to a high extent
after application of a heroin suppository, resulting in a lower
M3G/morphine ratio after rectal administration (1.5-2.9)
than after oral administration of heroin (4.6-12.3) [31,62].
Scores on euphoria were significantly higher after rectal
application than after an equal oral heroin dose [31].

Role of P-Glycoprotein and Organic Anion Transporting
Polypeptides

P-glycoprotein (P-gp) is an efflux pump that protects the
body against xenobiotic compounds [63]. Absorption from
the gastro-intestinal tract and entrance to the brain through
the blood-brain-barrier (BBB) are limited by P-gp substrates,
while the excretion into urine is promoted. In several in vitro
studies, it has been demonstrated that both morphine and
morphine-glucuronides are P-gp substrates [64-68]. The
transfer capacity of P-gp for morphine and morphine
glucuronides was however relatively small compared to
other compounds (e.g. paclitaxel) and opioids (e.g.
loperamide) in in vitro studies [64,69,70]. Whether heroin
itself is subject to P-gp mediated transport remains to be
studied. Remarkably, chronic exposure of morphine
increased P-gp density in rat brains, which may contribute to
the development of tolerance [71,72].

Another class of protective efflux transporters in brain,
liver and kidney is formed by the Organic Anion Transporting
Polypeptides (OATPs). Morphine, M3G and to lesser extent
M6G are subject of OATPs mediated transport, as is shown
in several experiments with the specific OATPs inhibitor
probenecid [73-75]. For interactions between P-gp blockers
and inducers see section “Interactions with transporting
enzymes” of this article.

Drug-Drug Interactions

In Table 2 , drug-drug interactions demonstrated or
suggested for heroin and its metabolites are summarised.

Interactions with Hydrolysis

Many heroin addicts use heroin and cocaine concomitantly
(“speed-balling” or “speed basing”). Both heroin and cocaine
are metabolised by carboxylesterases and in vitro compe-
titive inhibition of heroin metabolism by cocaine has been
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demonstrated [76]. Whether this interaction is relevant in
vivo has not yet been established.

It has been found, however, that concomitant use of
alcohol enhances the risk for a heroin overdose [77-79].
Ethanol inhibited the hydrolysis of cocaine by carboxyl-
esterases in vitro [80]. Whether the hydrolysis of heroin is
also inhibited in the presence of ethanol remains to be
studied. In plasma samples of heroin overdose victims a
relationship was found between ethanol levels and 6-
monoacetylmorphine concentrations, probably indicating
that hydrolysis of 6-monoacetylmorphine into morphine had
been delayed by alcohol use [81].

Interactions with Glucuronidation

Ethanol inhibited the glucuronidation of morphine dose
dependently in vitro [82]. In several in vitro and in vivo
studies, competitive inhibition of the glucuronidation of
morphine by UGT2B7 enzyme occurred when benzodia-
zepines [83-87], chloramphenicol [88,89], tricyclic anti-
depressants [90] and the nucleoside reverse transcriptase
inhibitor zidovudine [91] were added. The net pharmaco-
dynamic effect of interference of the glucuronidation of
morphine is however hard to predict. The formation of the
inactive or even antagonistic, metabolite M3G was relatively
more inhibited by oxazepam than the formation of the

Table 2. Drug interactions with Heroin and its Metabolites

Co-medication Interaction Type of Study, Results Clinical Relevance Reference

Hydrolysis of heroin and 6-monoacetylmorphine (6-AM)

Cocaine Inhibition In vitro Competitive inhibition Unknown [77]

Ethanol Inhibition Post-mortem In presence of ethanol

6-AM levels 

Enhanced risk for

overdose

[82]

Glucuronidation to morphine 3-glucuronide (M3G) and morphine-6-glucuronide (M6G)

Acetaminophen

(paracetamol)

Induction In vivo Observational study morphine treated patients Unknown [88]

Benzodiazepines Inhibition In vitro

In vivo

Competitive inhibition

M3G formation relatively more inhibited by

oxazepam.

Trend for  M3G/morphine serum ratio in

morphine treated patients

Unknown

Unknown

[84-88,119]

Chloramphenicol Inhibition In vitro

In vivo

Competitive inhibition

Rodents, extreme doses chloramphenicol, AUC

morphine

Unknown

[89,90]

Ethanol Inhibition In vitro Dose dependent Unknown [83]

Ranitidine Inhibition In vitro

In vivo

M6G forming relatively spared

Healthy volunteers

Opioid effect [94,120]

Amitriptyline,

nortriptyline, fluoxetine

Inhibition In vitro Competitive + non-competitive Unknown [91]

Zidovudine Inhibition In vitro Clinical morphine

sparing effect

[92]

Transporting enzymes (morphine substrates)

Quinidine P-gp blocker In vivo Healthy volunteers, oral morphine: AUC

morphine

iv morphine: insign.

PK/PD interaction

effect

[100,101]

Valspodar P-gp blocker In vivo Healthy volunteers, iv morphine: AUC M3G Insign. PD effects [102]

Rifampin P-gp

induction

In vitro

In vivo Healthy volunteers

Double-blind crossing over Bioavailability oral

morphine

Analgesic effect [72,103]

Probenecid OATP blocker In vitro

In vivo Rodents, antinociception Unknown

[75,104]

OATP= organic anion tranporters, P-gp= P-glycoprotein, AUC= area under the curve.
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agonistic conjugate M6G [83,87]. Morphine conjugate M6G
circulates longer and is thought to be a more potent -opioid
receptor agonist than its precursor morphine [52]. When after
inhibition of the glucuronidation the morphine plasma
concentrations would increase, the expected increase of
opioid effect could be opposed by the lower quantities of the
biologically more active metabolite M6G [92]. After
inhibition of the glucuronidation of morphine by oxazepam
and ranitidine [93], the formation of M6G was relatively
spared compared to the formation into M3G. Ranitidine
indeed enhanced the opioid effects of morphine in vivo [93].

In post-operative patients, lower opioid doses are
required for adequate analgesia at concomitant administration
of non-steroidal anti-inflammatory drugs (NSAIDs) [94].
NSAIDs are also cleared by glucuronidation although in
contrast to morphine, primarily by UGT 1A3 [95], and in
minor quantities by UGT2B7 iso-enzymes [96]. The opioid
sparing effect of NSAIDs is therefore probably not related to
pharmacokinetic interaction but rather to a pharmacodynamic
interactive effect. However, administration of NSAIDs
diminished the creatinine clearance in post-operative patients
with 22mL/min (95% CI 7-37), a process that could have
contributed to the morphine sparing effect of NSAIDs
[97,98].

Interactions with Transporting Enzymes

When morphine was administered orally in humans, co-
administration of the P-gp blocker quinidine significantly
increased the absorption and plasma concentrations of oral
morphine [99]. However, when morphine was administered
intravenously in human volunteers, the effects of P-gp
blockers quinidine and valdospar on the pharmacokinetics
and pharmacodynamics of morphine was limited [100,101].
If quinidine and valdospar are both equally effective
inhibitors of P-gp in the BBB and digestive tract, it might be
concluded that P-gp efflux did not appear to have a
significant effect on access of morphine to the central nervous
system. In a study by Fromm et al., co-administration of P-
gp inducer rifampin, significantly reduced the analgesic
effects of oral morphine [102]. However, based on this study
it could not be concluded whether the reduced pharmaco-
dynamic effects of oral morphine were due to P-gp induction
in the digestive tract, or to P-gp induction in the blood brain
barrier.

The involvement of Organic Anion Transporters (OATPs)
in morphine distribution is only recently discovered and other
clinical relevant interactions with OATPs activity, except for
probenecid [103], have not been described thus far.

Hepatic Impairment

Liver enzymes are involved in heroin hydrolysis and
glucuronidation of the heroin metabolite morphine. However,
esterases are also abundantly present in blood and other
organs and it is therefore not very likely that hepatic
impairment would influence hydrolysis of heroin.

The liver is the major organ involved in the glucu-
ronidation of morphine. However, morphine metabolism was
relatively normal in patients with severe liver cirrhosis,
possibly because glucuronidation was taken over by other
organs [104,105]. In general, oxidative pathways are more
impaired than glucuronidation in liver diseases [68]. It is

hypothesized that glucuronidation is maintained in diseased
liver, because of the leakage of microsomal UGT from
damaged hepatocytes [106]. The bioavailability of oral
heroin would probably be enhanced in patients with serious
liver disease. This occurred following oral morphine
administration in patients with serious liver cirrhosis,
probably because of the loss of the first pass effect [107].

Liver diseases can cause low albumin serum concen-
trations. The binding of heroin and morphine to albumin is
however moderate. In several studies the variability in serum
morphine concentrations was indeed not related to albumin
levels [87,104].

Therefore, it can be concluded that hepatic impairment
probably has no major consequences for the pharmaco-
kinetics of heroin.

Renal Impairment

The kidneys are primarily involved in the excretion of
morphine and morphine glucuronides following heroin
administration [27,28]. In a clinical study, the renal clearance
of unbound morphine exceeded the renal clearance of
creatinine, a measure of the glomerular filtration rate [108].
In isolated perfused rat kidneys, morphine is subject to
glomerular filtration, active secretion in proximal tubules
and probably partly re-absorption, resulting in a net tubular
secretion [109,110]. The tubular secretion process was not
saturable within a large range of morphine concentrations
(0.2-200 M) in a rodent model [111]. The morphine-glucu-
ronides were partly reabsorbed in the kidney, active excretion
of the morphine-glucuronides in urine did not occur [110]. In
several studies among patients with renal impairment, it was
confirmed that the total exposure to morphine glucuronides
and to lesser extent morphine was significantly increased in
blood or CSF [108,112-114]. However, variations in creatinine
clearance only minimally accounted for the variability of
morphine-glucuronide conjugates levels in patients with
minor renal dysfunction or in healthy volunteers [54,87]. In
conclusion, accumulation of morphine glucuronides can be
considerable in patients with serious renal impairment, but
seem not clinical relevant in milder cases. Although
pathologic-anatomical abnormalities of the kidney are
commonly found post-mortem in intravenous users of
contaminated street heroin, renal impairment would probably
be relatively mild in most heroin dependents [8,9,115-117].
Control of creatinine clearance during heroin-assisted
treatment is however advised.

DISCUSSION AND CONCLUSION

There is an international growing interest in the
prescription of high doses pharmaceutically prepared heroin
as a maintenance treatment in heroin addicted patients. The
aim of heroin-assisted therapy is prevention of the drug
seeking behaviour outside the clinics. Adequate prevention
of withdrawal symptoms as well as the providing of euphoric
effects may contribute to continuation and success of heroin
maintenance therapy. Of all administration methods, heroin
inhalation and intranasal administration resembled most the
intravenous pharmacokinetic profile, and thereby the intense
euphoric feelings following intravenous heroin, the so called
“flash”. Oral, rectal and intramuscular administrations are
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probably more suitable to prevent withdrawal symptoms and
craving.

Long-term heroin prescription is not very common and
information about the consequences of the introduction of
co-medication, the use of other substances and the impact of
renal or hepatic impairment on heroin metabolism is
scattered and relatively sparse. The aim of this article was
therefore to review the pharmacokinetics of heroin and to
discuss factors that are involved in variability in heroin
pharmacokinetics. Most pharmacokinetic interactions data
originate from in vitro or animal studies and studies on
morphine administration in healthy volunteers. Inhibition of
glucuronidation of the heroin metabolite morphine by
ranitidine and zidovudine resulted in clinical relevant effects.
Co-administration of inhibitors and inducers of transporter
enzym P-glycoprotein are probably only clinical relevant
when heroin is administered orally. When morphine was
administered intravenously, these P-glycoprotein modulators
did not result in clinical relevant interactions. In renal
impaired patients, accumulation of morphine and morphine-
glucuronides occurred. Control of creatinine clearance
during heroin-assisted treatment is therefore advisible. In
hepatic impairment, heroin and morphine metabolism was
relatively spared. Consumption of other licit and illicit subs-
tances besides heroin is very common in addicted patients.
Heroin prescribing physicians should be aware that alcohol,
cocaine and benzodiazepines can cause both pharmaco-
dynamic and pharmacokinetic interactions and thereby a
prolonged effect of heroin.

When plasma concentrations of heroin and/or its meta-
bolites slowly change e.g. due to an interaction or slowly
developing renal dysfunction, pharmacodynamic adaptation
may occur and the effects may not be detected. However, an
acute decline of renal clearance may induce serious overdose
symptoms. Furthermore, a sharp increase in clearance or P-
gp activity (e.g. by the introduction of rifampin) may induce
abstinence symptoms, and thereby an increasing drug-
seeking behaviour.

Pharmacokinetic interactions that resulted in adverse
events or withdrawal symptoms during heroin treatment, were
not reported in the literature. Overdoses are often thought to
be due to the use of illicit opiates beside the prescribed
heroin dosage, and therefore relevant pharmacokinetic
interactions may have been overlooked in the clinical
practice of heroin-assisted treatment. More awareness of the
possibility of pharmacokinetic interactions in heroin-assisted
therapy may prevent overdose events, withdrawal symptoms
and therapy failure in the future.
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