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Modulation of stress consequences by hippocampal monoaminergic,
glutamatergic and nitrergic neurotransmitter systems
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FRANCISCO SILVEIRA GUIMARÃES

Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil

(Received 28 September 2006; revised 21 December 2006; accepted 14 January 2007)

Abstract
Several findings relate the hippocampal formation to the behavioural consequences of stress. It contains a high concentration
of corticoid receptors and undergoes plastic modifications, including decreased neurogenesis and cellular remodelling,
following stress exposure. Various major neurotransmitter systems in the hippocampus are involved in these effects. Serotonin
(5-HT) seems to exert a protective role in the hippocampus and attenuates the behavioural consequences of stress by
activating 5-HT1A receptors in this structure. These effects may mediate the therapeutic actions of several antidepressants.
The role of noradrenaline is less clear and possibly depends on the specific hippocampal region (dorsal vs. ventral).
The deleterious modifications induced in the hippocampus by stress might involve a decrease in neurotrophic factors such as
brain derived neurotrophic factor (BDNF) following glutamate N-methyl-D-aspartate (NMDA) receptor activation.
In addition to glutamate, nitric oxide (NO) could also be related to these effects. Systemic and intra-hippocampal
administration of nitric oxide synthase (NOS) inhibitors attenuates stress-induced behavioural consequences. The challenge
for the future will be to integrate results related to these different neurotransmitter systems in a unifying theory about the role
of the hippocampus in mood regulation, depressive disorder and antidepressant effects.

Keywords: Allostasis, antidepressant, BDNF, depression, inescapable stress, dopamine

Introduction

Several hypotheses about the pathophysiology of

depression and other stress-related disorders have

been proposed. There is an extensive scientific

literature describing the involvement of the hippo-

campal formation in the neurobiology of such

disorders, mainly based on observations that similar

neurochemical and morphological changes can be

found in the hippocampus of stressed animals and

depressed humans, which can be prevented or

reversed by repeated antidepressant treatment.

Much attention has been focused on hippocampal

serotonergic and noradrenergic systems. However,

recent pieces of evidence has linked other hippocam-

pal neurotransmitters, such as glutamate and nitric

oxide (NO), to the development of stress-induced

behavioural consequences. In the present work, we

review recent data that reinforces the involvement

of the hippocampus in behavioural changes induced

by stress and how local transmitter systems may

interact to mediate stress adaptation and antidepress-

ant effects.

Stress and coping

Selye (1936) first described that exposure to different

noxious stimuli could lead to physiologic responses

aimed at allowing adaptation of the organism to the

new demands. In order to characterize this phenom-

enon, Selye coined the term stress to describe a

potential or real threat to homeostasis imposed by

different noxious stimuli that could lead to several
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 physiological alterations and eventually, death. Selye

postulated a three stage stereotyped physiologic

response in reaction to a stressor, called the general

adaptation syndrome. The first stage is the alarm

reaction, in which the adrenal medulla releases

epinephrine and the adrenal cortex produces gluco-

corticoids (GCs) to help to restore homeostasis.

Restoration of homeostasis leads to the resistance

stage, in which defence and adaptation are sustained.

If the stressor persists, the adaptive response ceases

and the stage of exhaustion follows, with illness and

death being possible consequences. Nowadays, it is

well recognized that not only physical and chemical

agents can act as stressors but also psychological

factors, such as novelty and social problems, can cause

significant physiological and behavioural changes.

Bruce McEwen and his research team have

reinterpreted Selye’s alarm response and proposed a

new terminology for linking the protective and

damaging effects of the biological responses to

stressors (McEwen 1998, 2005a,b; Goldstein and

McEwen 2002). They proposed the concept of

allostasis to refer to a system by which stability is

achieved through change—i.e. adaptation. When

one’s set points vary beyond the limits of homeostatic

mechanisms, these variables are referred as being in

allostatic states (altered and sustained activity aimed

at integrating energetic and the associated behavioural

modifications in response to changing environment

and challenges). The cumulative results of an

allostatic state would then lead to allostatic load,

which also provides, within limits, adaptation.

However, if the additional load of unpredictable

events in the environment is superimposed, then

allostatic load can increase and become allostatic

overload. Allostatic overload has no useful purpose

and predisposes the individual to disease. Thus,

according to McEwen, Selye’s alarm response could

be reinterpreted as the process leading to adaptation,

or allostasis, in which GCs, as well as other mediators,

promote adaptation to the stressor. But if the alarm

response is sustained, with prolonged hormonal

secretion, an allostatic state may ensue leading to

allostatic overload, which replaces Seley’s stage of

exhaustion. In other words, Selye’s diseases of

adaptation would be the result of the allostatic state

leading to allostatic overload and resulting in the

exacerbation of pathophysiological changes.

A prominent mechanism by which the brain reacts

to stress is by activating the hypothalamic–pituitary–

adrenal (HPA) axis (Herman and Cullinan 1997;

Sapolsky et al. 2000; Tsigos and Chrousos 2002;

Carrasco and Van de Kar 2003). Neurons in the

paraventricular nucleus of the hypothalamus (PVN)

secrete corticotrophin-releasing factor (CRF), which

stimulates the synthesis and release of adrenocortico-

tropin (ACTH) from the anterior pituitary. ACTH

then stimulates the synthesis and release of GCs

(cortisol in humans and corticosterone in rodents).

GCs, in turn, exert effects on metabolism and affect

behaviour by acting on two specific receptors

(glucocorticoid receptors—GRs and mineralocorti-

coid receptors—MRs) in different brain regions (Fuxe

et al. 1996; Carrasco and Van de Kar 2003). GCs can

also exert inhibitory feedback on the HPA axis activity

by acting on its receptors in the PVN, hippocampus

and cortex (Herman and Cullinan 1997; de Kloet

2000; Carrasco and Van de Kar 2003). Thus, the

stress response, with resultant activation of the HPA

axis, is meant to be acute or at least of a limited

duration. The time-limited duration of this process

renders its accompanying antireproductive, anti-

growth, catabolic and immunosuppressive effects,

temporarily beneficial rather than damaging, allowing

adaptation to occur. In contrast, chronicity of the

stress system activation would lead to damage and

induce pathological states.

In accordance with this proposal, chronic exposure

to uncontrollable stresses and consequently, to high

GCs levels, has been related to the aetiology of several

diseases, including depression and post-traumatic

stress disorder (PTSD) (Baungartner et al. 1985;

Peeters and Broekkamp 1994; Heim et al. 2000;

Sheline 2000; Bonne et al. 2004; Charney 2004;

McEwen 2005a). For example, an increased preva-

lence of life stress episodes before the onset of major

depression has been documented, suggesting that they

could have a main role in its development (Post 1992).

In laboratory animals, the exposure to uncontrollable

and severe stressful events can induce physiological

and behavioural alterations that resemble human

depression, such as motor deficits, weight and

sleep changes, anhedonia, memory impairments and

excessive GC secretion (Willner 1986, 1990; Willner

and Mitchell 2002; Anisman and Matheson 2005).

Therefore, most animal models aimed at studying the

neurobiology of stress-related disorders, such as

depression, are based on behavioural modification

induced by exposure to different stressors that can be

prevented or reversed by antidepressant drugs (Will-

ner 1986, 1990; Willner and Mitchell 2002).

HPA axis hyperactivity has been implicated in the

initiation and maintenance of some stress-induced

alterations that could contribute to depression. This

hypothesis is supported by several clinical and

experimental findings (Checkley 1992; Heim et al.

2000; Tsigos and Chrousos 2002; Keller et al. 2006).

Abnormal, excessive activation of HPA axis is observed

in depressed individuals (Whiteford et al. 1987;

Gold et al. 1995; Keller et al. 2006), who often show

increased cortisol production that is unresponsive to

the administration of the synthetic GC dexamethasone

(Baungartner et al. 1985). Moreover, there is a high

co-morbidity between depression and Cushing’s

syndrome, which is a disease characterized by high

levels of circulating cortisol (Starkman et al. 1981,

S. R. L. Joca et al.228
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 1986, 1992). Consistent with these human data are the

observations that rodents reared in isolation or

submitted to inescapable shocks show abnormalities

in HPA axis function (Heidbreder et al. 2000) and that

chronic GC treatment can lead to depressive-like

behaviour in rats (Johnson et al. 2006).

However, the mechanisms that mediate the stress

effects on behaviour and mood are not fully under-

stood. It has been suggested that the levels of GCs,

particularly if sustained over long periods of time,

might be high enough to induce toxic effects in some

neuronal circuits, especially those related to mood

regulation, such as the hippocampus, cortex and

amygdala (Sapolsky 2000; Sapolsky et al. 2000;

Lee et al. 2002b,a). Impaired functions in these

structures might be expected to contribute to some

of the cognitive abnormalities observed in depressed

patients.

Stress and the hippocampus

The hippocampus is a brain structure that has been

traditionally reported to be involved in spatial learning

and in episodic, declarative and contextual memory

(Fanselow 2000; Riedel and Micheau 2001; Knierim

2003; Shu et al. 2003; Buckley 2005; Frankland and

Bontempi 2005; Moscovitch et al. 2005, 2006).

However, the hippocampus is the brain region showing

the highest density of receptors for corticosteroids

(McEwen et al. 1968; Gerlach and McEwen 1975; de

Kloet 2000) and has been consistently linked to the

brain’s response to stress and to the regulation of the

HPA axis activity (de Kloet 2003; Herman et al. 2005).

It has been proposed to play an important role in coping

with threatening stimuli. According to Gray and

McNaughton (2000), during threatening or novel

situations the hippocampus is involved with the

detection and resolution of conflicts between incompa-

tible goals or response tendencies. Specifically, when

this type of conflict is detected, the hippocampus

outputs a signal that increase the weight or valence of

affectively negative information, thereby reducing or

inhibiting the tendency to approach the goal. During

extinction, the hippocampal output would augment the

negative affect produced by nonreward (e.g. frustra-

tion). In accordance with this proposal, neuroimaging

studies have shown hippocampal/parahippocampal

activation during perception of several negatively

valenced stimuli and/or experiencing of negatively

valenced affective states (Blood et al. 1999; Isenberg

et al. 1999; Mirz et al. 2000). In addition, the

hippocampus could have an important protective role

after repeated stress. An impairment of this adaptive

effect induced by severe stress could facilitate the

development of behavioural deficits and clinical

symptoms (Deakin and Graeff 1991; Graeff et al. 1996).

Stress effects on the hippocampus seem to be

mediated largely by the lower affinity GRs which

become heavily occupied with corticosteroids in

response to stress (Joels 2001; de Kloet 2003; de

Kloet and Derijk 2004). GC initial action on these

receptors is involved in terminating the endocrine

response to stress by attenuating HPA axis activation

(Herman and Cullinan 1997; Feldman and Weidenfeld

1999; Herman et al. 2005) and promoting memory

storage in preparation for future events (Oitzl and de

Kloet 1992; Sandi et al. 1997; de Kloet et al. 1999;

Oitzl et al. 2001; Avital et al. 2006; Diamond et al.

2006). Since corticosteroid receptors function as

transcriptional regulators, the first step that leads to

their ultimate effect on adaptive behaviour involves the

altered expression of responsive genes. In the hippo-

campus, the activation of MRs or GRs leads to the

altered expression of several genes that underlie aspects

of cell metabolism, structure and synaptic transmission

(Datson et al. 2001). Tables I and II summarize the

main findings relating hippocampal gene expression

changes, stress and antidepressant treatments.

Although GC-mediated processes are adaptive in

nature, repeated exposure to high levels of GCs can

be deleterious to the structure and function of the

hippocampus. This is supported, for example, by

numerous studies that consistently report that stress

decreases the proliferation of new neurons in the

subgranular zone of the hippocampus. Adult

neurogenesis is decreased by many different

types of stressors, including predator odour (Tanapat

et al. 2001), social stress (Gould et al. 1997; Czeh

et al. 2001), acute and chronic restraint stress

(Pham et al. 2003; Rosenbrock et al. 2005),

inescapable shocks (Malberg and Duman 2003;

Vollmayr et al. 2003; Bland et al. 2006) and chronic

mild stress (Alonso et al. 2004). These stress-

induced effects are thought to be corticosteroid-

dependent since administration of corticosterone

significantly decreases neurogenesis in the hippo-

campus (Gould et al. 1992; Cameron et al. 1998)

and the blockade of corticosteroid actions prevents

stress-induced decrease in neurogenesis (Cameron

and Gould 1996; Mayer et al. 2006). Moreover, it

seems that the suppressive action of GCs on cell

proliferation is not direct but occurs through an N-

methyl-D-aspartate (NMDA) receptor-dependent

excitatory pathway (Gould et al. 1997; Cameron

et al. 1998; Gould and Tanapat 1999; Nacher and

McEwen 2006). For a complete and recent review of

the literature on the regulation of neurogenesis by

stress, see Dranovsky and Hen (2006), Mirescu and

Gould (2006) and Schmidt and Duman (2006).

In addition to a decrease in neurogenesis, stress also

influences the structure of mature neurons in the adult

hippocampus. Repeated stress exerts effects similar to

GCs on dendritic remodelling in CA3. Chronic

restraint stress results in reduction in apical dendritic

length and branch number in rat CA3 pyramidal

neurons (Watanabe et al. 1992; Vyas et al. 2002).

Stress modulation by the hippocampus 229
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Table I. Gene expression changes in the hippocampal formation induced by stress.

Hippocampal regions Molecular approach Stress procedure Effect References

All ISH Shaking stress " GPDH Nichols et al. (1990)

CA1 ISH Restraint plus tail electrical shocks " c-fos, " zif/268 Schreiber et al. (1991)

DG ISH Acute restraint # c-fos Titze-de-Almeida et al.

(1994a,b)

All ISH Acute and repeated restraint # c-fos Melia et al. (1994)

CA1, DG ISH Acute restraint # MR hmRNA Herman and Watson (1995)

CA1 ISH Maternal deprivation # MR, # GR Vazquez et al. (1996)

DG, CA1, CA3 ICC Chronic social stress " c-fos Matsuda et al. (1996)

DG, CA1, CA3 ISH Maternal deprivation " GR Liu et al. (1997)

DG ISH, ICC Acute restraint " c-fos mRNA, $ Fos protein Del Bel et al. (1998)

All ISH; Acute prolonged stress (restraint, 2 h; forced

swim, 20 min and ether anaesthesia); CVUS

Acute: # GR and # MR; CVUS: $ GR and MR Liberzon et al. (1999)

DG, CA1 ISH Acute prolonged stress (restraint, 2 h; forced

swim, 20 min and ether anaesthesia); CVUS

Acute: # 5-HT1A, CVUS: $ 5-HT1A Lopez et al. (1999)

All ISH, Northern blot Chronic stress # GR Kitraki et al. (1999)

CA1-3, DG ISH Acute restraint " CRH Givalois et al. (2000)

All Quantitative RT-PCR Repeated restraint " GluR1, $ NMDA R1 Schwendt and Jezova (2000)

CA1-3, DG ISH Acute or repeated restraint $ nNOS de Oliveira et al. (2000)

DG, CA1, CA3 ISH Acute or repeated restraint # Synaptophysin " synaptotagmin Thome et al. (2001)

DG, CA1, CA3 ISH Repeated social stress # GR, " MR Meyer et al. (2001)

All ISH, RNAse protection assay Maternal deprivation # BDNF; # NMDA (NR-2A and NR-2B) Roceri et al. (2002)

All RNAse protection assay Acute restraint " BDNF Marmigere et al. (2003)

All ICC Acute restraint " PPA2 Morinobu et al. (2003)

All SAGE Forced swimming test 53 Genes differently expressed Drigues et al. (2003)

All ICC Repeated social stress # NGF, # M6a, # CLK-1, # GNAQ, Alfonso et al. (2004)

CA1, CA2, CA3, DG ICC Acute restraint " c-fos; de Medeiros et al. (2005)

All RT-PCR, microarray Learned helplessness Distinct gene expression profile compared to controls Kohen et al. (2005)

All real-time RT-PCR Repeated restraint # NGF, # M6a, # GNAQ, # CLK-1, # BDNF,

# CREB, # PKC, # NCAM, # synapsin I

Alfonso et al. (2006)

All Real time RT-PCR Social defeat " CRF, " GR Marini et al. (2006)

CA1, CA3 Microarray, Real time RT-PCR, ISH Repeated restraint 444 Genes differentially expressed, # Grb2,

# Pip5k1b, # Gstp2

Ejchel-Cohen et al. (2006)

All RT-PCR Repeated Morris water maze stress # GR, " pro-CRH and CRH-R1 Aguilar-Valles et al. (2005)

CA1 ISH Acute restraint and adrenalectomy $ Arc Mikkelsen and Larsen (2006)

ISH, in situ hybridization; ICC, immunocytochemistry; CVUS, chronic variable unpredictable stress; DG, dentate gyrus; SAGE, serial analysis of gene expression; GPDH, glycerol phosphate

dehydrogenase; MR, mineralocorticoid receptor; GR, glucocorticoid receptor; PPA2, phosphatase 2A; NGF, nerve growth factor; M6a, membrane glycoprotein 6a; CLK-1, CDC-like kinase 1; GNAQ,

G-protein alpha q; NCAN, neural cell adhesion molecule; Grb2, growth factor receptor-bound protein 2; Pip5k1b, phosphatidylinositol-4-phosphate 5-kinase, type 1 beta; and Gstp2, glutathione S-

transferase, pi2
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Table II. Gene expression changes in the hippocampal formation induced by antidepressant treatments.

Hippocampal

regions Molecular approach Antidepressant treatment Effect References

All ISH, RT-PCR, Southern blot SSRI # SERT Lesch et al. (1993)

DG ISH Imipramine - " 5-HT2C Tohda and Watanabe

(1996)

All ISH; Desipramine or fluoxetine Fluoxetine: " CREB and- # SP1; desipramine: " GRE Frechilla et al. (1998)

CA1, CA2, CA3,

CA4,

ISH; Imipramine or citalopram $ Zeta, # epsilon 1, # epsilon 2-subunits of NMDA

receptor

Boyer et al. (1998)

All Quantitative RT-PCR Fluoxetine " AA-NAT Uz and Manev

(1999)

Hippocampal cul-

tured cells

RT-PCR, ICC Desipramine, amitriptyline, mianserin or paroxetine " GR Okugawa et al.

(1999)

CA3, DG ICC in CRE–LacZ transgenic

mice.

Fluoxetine " CRE-mediated gene expression, " phosphorylation of

CREB

Thome et al. (2000)

CA1-3, DG ISH Buspirone, fluoxetine, 8-OH-DPAT or moclobe-

mide

" GR (8-OH and moclobemide), # GR (buspirone

and fluoxetine), " NGFI-A (moclobemide, 8-OH-DPAT,

fluoxetine)

Bjartmar et al. (2000)

DG, CA1-4 ISH Fluoxetine or venlafaxine # MR Yau et al. (2001)

DG ISH Fluoxetine, paroxetine, sertraline or tranylcypro-

mine

Time-dependent # (4 h) or " BDNF (24 after last injection) Coppell et al. (2003)

CA! ISH Venlafaxine, paroxetine or desipramine " Arc mRNA; Pei et al. (2003)

All SAGE Forced swimming test with moclobemide, clorgyline

or amitriptyline

53 Genes differently expresses, 89 genes changed by drugs Drigues et al. (2003)

All Two-dimensional protein gel

electrophoresis

Venlafaxine or fluoxetine 23 Protein spots modulated by drug treatment Khawaja et al. (2004)

All Real-time RT-PCR Psychosocial stress with clomipramine Stress # NGF, M6a, CLK-1, " GNAQ

clomipramine prevented stress-induced effects

Alfonso et al. (2004)

DG ICC 7-Nitro-indazole " PSA-NCAM, pCREB, 5-HT and TPH Park et al. (2004)

DG, CA1, CA3, ISH Fluoxetine " GC Yau et al. (2004)

CA1, CA2, CA3,

DG

ICC Imipramine with restraint stress # Stress induced " c-fos de Medeiros et al.

(2005)

All RT-PCR Fluoxetine " Serotonin N-acetyltransferase, per2, clock,

Bmal1, cry1, NPAS2 and # per1

Uz et al. (2005)

DG, CA1 ISH Fluoxetine " BDNF Molteni et al. (2006)

All Real time RT-PCR Imipramine and metyrapone " BDNF Rogoz and Legutko

(2005)

All Real time RT-PCR Mirtazepine " BDNF Rogoz et al. (2005)

All RT-PCR Fluoxetine, desipramine or phenelzine with corti-

costerone

Fluoxetine and phenelzine prevented # BDNF mRNA

induced by corticosterone

Dwivedi et al. (2006)

All Northern blot MPEP (selective mGlu5 receptor antagonist) " BDNF Legutko et al. (2006)

SERT, serotonin transporter; GRE, glucocorticoid response element; AA-NAT, N-acetyltransferase; Bmal1, brain and muscle ARNT-like protein; Cry1, cryptochrome 1; CRE, cAMP response element;

CREB, CRE binding protein; NGFI-A, nerve growth factor-induced clone A; Npas2, neuronal PAS2; NGF, nerve growth factor; M6a, membrane glycoprotein 6a; CLK-1, CDC-like kinase 1; GNAQ,

G-protein alpha q; per1-2, period homolog 1-2; PSA-NCAM, polysialylated-neural cell adhesion molecule; and TPH, tryptophan hydroxylase.
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 Other repeated stress paradigms, such as repeated

variable stress and psychosocial stress (Magariños and

McEwen 1995a; Magariños et al. 1996; Fuchs et al.

2001), result in similar dendritic remodelling in the

CA3 region. Repeated stress-induced dendritic remo-

delling may also be mediated by sustained high levels

of GCs (Sapolsky et al. 1990; Magariños and McEwen

1995b; Fuchs and Flugge 1998; Fuchs et al. 2001)

and glutamate (Magariños and McEwen 1995b;

McEwen 1996).

Stress also decreases the expression of the brain

derived neurotrophic factor (BDNF, Vaidya et al.

1997; Nibuya et al. 1999; Rasmussen et al. 2002;

Murakami et al. 2005; Smith 2005; see Duman and

Monteggia (2006) for a complete review). BDNF is

required for and may induce neurogenesis (Lee et al.

2002a; Scharfman et al. 2005), neuronal survival

(Sairanen et al. 2005) and neuronal branching

(Danzer et al. 2002; Govindarajan et al. 2006).

Moreover, BDNF exerts direct effects on membrane

excitability (Schinder and Poo 2000). Therefore, it is

possible that a stress-induced decrease of BDNF levels

is involved in neurogenesis, synaptic morphology and

membrane excitability changes, thus leading to

modification of hippocampal synaptic transmission,

connectivity and function. Stress and adrenal steroids

may impair long-term potentiation (LTP) in the

rodent hippocampus (Foy et al. 1987; Shors et al.

1990; Pavlides et al. 1993; Diamond and Rose 1994;

Pavlides et al. 2002; Kim et al. 2005; Aleisa et al.

2006; Kim et al. 2006), a synaptic model postulated to

be fundamental to memory storage (Lynch 2004). On

the other hand, stress seems to facilitate hippocampal

theta-rhythm (Shors et al. 1997; Yamamoto 1998), a

rhythmic waveform that occurs in alert, immobile rats

presented with threatening stimuli, possibly facilitat-

ing fear memory acquisition and retrieval (Seager et al.

2002; Seindenbecher et al. 2003; Vertes 2005).

In agreement with these electrophysiological data, it

is reported from studies employing behavioural

models that stress exerts complex effects on memory

processing, ranging from impairment of hippocampal-

dependent spatial memory to facilitation of fear-

related learning and memory (see Kim and Diamond

(2002) for review).

These findings have been related to several

neuropsychiatric diseases, especially depression and

PTSD. In agreement with this hypothesis, several

studies have found a significant reduction in

hippocampal volume in patients suffering from

these disorders (Sheline et al. 1996, 1999, 2003;

Stein et al. 1997; Bremner et al. 2000; Mervaala

et al. 2000; Steffens et al. 2000; Frodl et al. 2002;

MacQueen et al. 2003; Smith 2005; Karl et al.

2006). Interestingly, Fuchs and co-workers (Ohl

et al. 1999, 2000; Fuchs et al. 2001) have shown

that chronic psychological stress in primates reduces

the proliferation of new cells in the hippocampus,

causing a decrease of neuronal function and viability.

This was associated with a trend towards a decrease

in total hippocampal volume. Again, this seems to be

mediated by high corticosteroid levels, since it can

also be induced by long-term cortisol exposure

(Lupien et al. 1998; Ohl et al. 1999) and reduced

hippocampal volume can be observed in Cushing’s

patients (Starkman et al. 1992). Recent evidence, on

the other hand, suggests that in PTSD a small

hippocampus probably precedes the symptoms and

predicts the susceptibility to develop the disorder

after severe stress exposure (Gilbertson et al. 2002;

Gross and Hen 2004). Together, however, these

results support the proposal that in depression and

PTSD there is an impairment of a stress protective

role played by the hippocampus.

The fact that chronic antidepressant treatment

is able to attenuate these stress-induced effects

strengthens the involvement of hippocampal atrophy

in pathophysiology of stress-related disorders (Sheline

et al. 2003; Bremner 2006). Depression, therefore,

could be a consequence of stress-induced neuronal

death and decreased cellular resilience within the

hippocampal circuitry with consequent alteration in

information processing. Antidepressants would work

by restoring normal connectivity and function in this

region (Castrén 2005). According to this hypothesis,

increased BDNF release would select those neurons

and connections that mediate useful neuronal activity

to the target neurons and helps to eliminate

connections that produce random noise. Therefore,

“although antidepressant-induced neurogenesis

increases overall activity, only those neurons that

best mediate useful neuronal activity to the target cells

would be selected and prevail in the competition.

Increased granule neuronal turnover produced by

antidepressant treatments indicates that there are

more competing neurons available for selection, which

may improve the ability of the hippocampus to

rapidly adapt to emerging environmental challenges”

(Sairanen et al. 2005). Corroborating this hypothesis,

it was shown that behavioural effects of antidepress-

ants depend on intact BDNF signalling (Saarelainen

et al. 2003) and hippocampal neurogenesis (Santarelli

et al. 2003). Moreover, hippocampal BDNF admin-

istration prevents cognitive impairment induced by

stress (Radechi et al. 2005) and induces antidepress-

ant-like effects in animal models (Sciuciak et al. 1997;

Shirayama et al. 2002).

In summary, a wealth of evidence indicates that

impairment of normal hippocampal functions could

lead to stress-related disorders, maybe by impairing

protective mechanisms and enhancing the proces-

sing of aversive memories, predisposing the individ-

ual towards negatively valenced affective states. The

increase in cell turnover and connectivity induced

by antidepressants would restore hippocampal

function.
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 Stress, serotonin and the hippocampus

Since the discovery that the selective inhibition of

serotonin reuptake induces antidepressant effects,

several studies have investigated the role of the

serotonergic neurotransmission in the neurobiology

of depression. Serotonin was shown to be essential to

the effects of antidepressant drugs by Delgado et al.

(1990). They reported that remitted depressed

patients receiving antidepressants experience an

acute symptom relapse after a procedure (tryptophan

depletion) that decreases serotonin brain levels

(Delgado et al. 1990; Heninger et al. 1996). More

recently, it was shown that reducing serotonin

synthesis induced depressive-like symptoms in normal

subjects submitted to uncontrollable stress (Richell

et al. 2005). Therefore, it seems that serotonin is not

only necessary for the therapeutic effects of anti-

depressants but it is also required to facilitate

resilience to uncontrollable stress. Also, the acute

relapse of depressive symptoms induced by serotonin

depletion suggests that other mechanisms in addition

to increased neurogenesis and cellular resilience are

involved in the therapeutic effects of antidepressants.

Deakin and Graeff (1991) proposed that the

serotonergic pathways originated in the dorsal raphe

nuclei (DRN) regulate adaptive responses aimed at

terminating acute stress, such as escape, fight and flight

reactions. However, in case of chronic exposure to

inescapable aversive stimuli, where coping with stress

is needed the pathway connecting the median

raphe nucleus (MRN) to the hippocampus would

help adaptation to occur by inhibiting the consolida-

tion of stressful memories and thus disconnecting the

aversive events from the behavioural outcomes

(Deakin and Graeff 1991). A failure in this mechanism

would favour the development of stress-induced

behavioural deficits in animals and depression in

humans. Several experimental findings have

supported this hypothesis (see Graeff et al. (1996) for

review). For example, electrolytic lesions of the MRN

significantly enhanced plasma corticosterone levels

and incidence of gastric ulcers (Andrade et al. 1999)

and lesions of serotonin neurons located in the MRN

impaired the behavioural adaptation to repeated

restraint stress (Netto et al. 2002). Moreover,

adaptation to chronic mild stress was followed by

increased levels of serotonin in the dorsal hippocampus

(Storey et al. 2006) and post-stress facilitation of

hippocampal serotonergic neurotransmission pre-

vented the development of stress-induced behavioural

deficits (Guimarães et al. 1993; Padovan and Guimar-

ães 1993; Joca et al. 2003, Figure 1), findings which

are consistent with the hypothesis that increased

serotonin release in the hippocampus may be impli-

cated in the mechanisms underlying coping with

inescapable stress.

In agreement with these data, it was shown in

rodents that behavioural adaptation to repeated

restraint stress is followed by serotonergic super-

sensitivity (Kennett et al. 1985a,b) and that post-

stress facilitation of serotonergic neurotransmission by

5-HT1A agonist administration is able to prevent the

development of stress-induced behavioural conse-

quences (Kennett et al. 1987). These results, there-

fore, suggest that adaptation to stress involves

augmentation of 5-HT1A receptor function.
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Figure 1. Post-stress facilitation of serotonin-mediated neurotransmission in the dorsal hippocampus prevents the behavioural consequences

of stress. Male Wistar rats (n ¼ 7–23) were submitted to inescapable footshocks (40 shocks, 1 mA, 10 s) or habituation (30 min) in a shuttle

box. Immediately afterwards, they received bilateral intra-hippocampal injections of saline (Sal) or zimelidine (Zim, 20 or 100 nmols/0.5ml), a

selective serotonin reuptake inhibitor, and were tested 24 h later wit escapable footshocks (30 sound-signalled shocks, 0.8 mA, 10 s). Data are

expressed as the mean ^ SEM number of escape and/or avoidance failures in each block (summation of five individual trials). * Indicates

significant difference from respective Sal-treated group ( p , 0.05, ANOVA followed by Duncan test, modified from Joca et al. (2003), with

kind permission from Elsevier).
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 Hippocampal 5-HT1A receptors are likely to be the

main target of the MRN-serotonergic pathway to

promote stress adaptation. Post-stress microinjections

of a selective serotonin reuptake inhibitor (SSRI) or

5-HT1A agonists into the dorsal hippocampus reversed

the deficits induced by restraint stress of open arm

exploration in an elevated plus-maze (Guimarães et al.

1993, Netto and Guimarães 1996). More recently, we

showed similar effects in the learned helplessness

model (Joca and Guimarães 2006, Figure 1).

The mechanisms by which 5-HT1A receptors

mediate adaptation to stress are still unknown. One

possible mechanism could be interference with

consolidation of stressful memories (Guimarães et al.

1993). Activation of 5-HT1A receptors negatively

modulates LTP in the hippocampus (Corradetti et al.

1992; Sakai and Tanaka 1993; Kojima et al. 2003;

Tachibana et al. 2004), a phenomenon traditionally

linked to learning and memory (Vertes 2005).

Consistent with these physiological data, systemic or

intra-hippocampal administration of 5-HT1A agonists

impaired acquisition and consolidation of spatial and

fear-related memories (Carli and Samanin 1992; Carli

et al. 1992a,b; Stiedl et al. 2000). Moreover, mice with

knockout of 5-HT1A receptors show impaired

hippocampal-dependent learning and memory (Sar-

nyai et al. 2000), and their fear response is biased

toward threatening cues (Gross et al. 2000; Klemen-

hagen et al. 2006). Therefore, activation of hippo-

campal 5-HT1A receptors could help adaptation to

stress by attenuating the emotional impact of aversive

stimuli and consequently inhibiting the consolidation

of stressful memories. Another possibility is that the

activation of 5-HT1A receptors could attenuate

hippocampal hyperactivity, which can be observed in

stressed rats (Petty and Sherman 1981; Shumake et al.

2002) and depressed humans (Mayberg et al. 2000;

Goldapple et al. 2004), by attenuating the release of

glutamate (Matsuyama et al. 1996; Strosznajder et al.

1996). Finally, 5-HT1A mediates some trophic actions

attributed to serotonin, such as the increase in

neurogenesis (Brezun and Daszuta 1999; Brezun

and Daszuta 2000; Radley and Jacobs 2002; Banasr

et al. 2004) and the release of neurotrophic factors

(Galter and Unsicker 1996). It is possible that these

effects could protect hippocampal circuitry from the

deleterious effects induced by repeated exposure to

stress and GCs.

Under conditions of repeated exposure to severe

inescapable stress and high corticosteroid levels 5-

HT1A-mediated functions could be impaired, thus

predisposing to the development of behavioural

deficits. In fact, different kinds of severe stressors

can induce down-regulation and desensitization of 5-

HT1A receptors within the hippocampus (Flugge

1995; Karten et al. 1999; van Riedel et al. 2003). This

seems to be corticoid-dependent, since the adminis-

tration of corticosterone to rats induces the same

effect (Mendelson and McEwen 1992; Meijer and de

Kloet 1994; Beck et al. 1996; Neumaier et al. 2000;

Bijak et al. 2001) and removal of the adrenal glands

enhances 5-HT1A expression in the hippocampus

(Chalmers et al. 1993). Besides, MR, GR and 5-HT1A

receptors are highly colocalized within the hippo-

campus (Lopez et al. 1998, Lopez et al. 1999), which

strengthens the possibility that 5-HT1A expression is

under the control of GCs. However, altered 5-HT1A

function and hypocortisolemia are also observed after

repeated exposure to severe stress (Harvey et al. 2003,

2004a). Harvey and co-workers suggested that this

could be the result of a hypersensitive feedback

regulation on HPA-axis regulation that would follow

the acute hypercortisolemia induced by the first stress

exposure. The hypocortisolemia over sustained

periods could also contribute to altered 5-HT1A

function and abnormal behaviour. This can be of

special importance in the neurobiology of PTSD,

where hypocortisolemia is a hallmark characteristic of

the disorder. The finding that stressed rats show

cognitive impairment along with 5-HT1A receptor

changes (Harvey et al. 2004a) and that chronic

antidepressant treatment reverses the stress effects

upon 5-HT1A receptors (Bijak et al. 2001) further

suggest that 5-HT1A-mediated functions are import-

ant for normal behaviour and mood.

Several clinical studies suggest an impairment of

hippocampal 5-HT1A-mediated neurotransmission in

depression. Post-mortem brains of depressed suicides

show reduced number of hippocampal post-synaptic

5-HT1 receptors (Cheetham et al. 1990) and an

increased number of 5-HT inhibitory autoreceptors

(Stockmeier et al. 1998). In addition, depressed

patients have a widespread reduction in 5-HT1A

receptor binding measured by positron emission

tomography scans with [C]WAY-100635 (Drevets

et al. 2000; Sargent et al. 2000) and show a marked

attenuation of prolactin release in response to

intravenous tryptophan (Deakin et al. 1990). Finally,

most effective antidepressants progressively enhance

serotonin function in the hippocampus (Blier and De

Montigny 1994, Haddjeri et al. 1998; Blier 2003;

Castro et al. 2003).

Therefore, it can be suggested that severe inescap-

able stress impairs the hippocampal serotonergic

system, particularly 5-HT1A receptors, which would

limit adaptation to subsequent aversive stimuli,

leading to helpless-like behaviour and depressive

symptoms in humans. Chronic antidepressant treat-

ment, by facilitating 5-HT1A-mediated transmission

within the hippocampus, would ameliorate these

behavioural changes.

Beyond serotonin

In addition to serotonin, several neurotransmitter

systems in the hippocampal formation may also
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 participate in stress responses. Ninety per cent of

pyramidal and granule cells within the hippocampus

are glutamatergic and 10% are GABA-producing

interneurons (Vizi and Kiss 1998). Moreover, the

hippocampal neuropil is enriched by noradrenergic,

serotonergic, dopaminergic and cholinergic axon

terminals. These systems are afferent pathways

originating from the locus coeruleus, raphe nuclei,

ventral tegmental area (VTA) and septal nuclei,

respectively (reviewed in Vizi and Kiss 1998).

Noradrenergic system

The noradrenergic system has long been related to

behavioural responses to stress (Leonard 2001;

Morilak et al. 2005) and to the mechanism of action

of antidepressant drugs (Heninger et al. 1996;

Brunello et al. 2002; Nutt 2006). Noradrenergic

neurons are excited in response to stress, leading to

enhanced noradrenaline release in several brain

regions, including limbic regions thought to be

involved in mediating a variety of behavioural,

cognitive, affective, autonomic and neuroendocrine

responses to stress (Morilak et al. 2005).

However, noradrenaline and serotonin may play

different roles in the hippocampus. In several

behavioural paradigms (open-field, passive avoidance

and Geller-Seifter), intra dorsal-hippocampus admin-

istration of serotonin or noradrenaline induced

opposite behavioural effects (Plaznick et al. 1983).

Serotonin and noradrenaline also show differences in

the regulation of hippocampal functional activity.

While serotonin inhibits theta rhythm (Hajos-Korcsok

et al. 2000) and LTP (Corradetti et al. 1992),

noradrenaline seems to facilitate both processes

(Katsuki et al. 1997; Hajos et al. 2003; Almaguer-

Melian et al. 2005). In this regard, noradrenaline

release into the hippocampus in response to aversive

stimuli would signal relevant biological outcomes

(“alarm-system”), promoting arousal and storage

of fear-related memories (Gray and McNaughton

2000). Thus, the persistence of this system in the

active mode could lead to the development of

behavioural disorders, such as anxiety and depression.

In accordance with this hypothesis, the anxiogenic

drug FG-7142 facilitates noradrenergic transmission

in the dorsal hippocampus (Ida et al. 1991). Similar

effects were reported for animals that showed

potentiated behavioural response to stress (Rosario

and Abercrombie 1999). Moreover, facilitation of

noradrenergic neurotransmission within the dorsal

hippocampus failed to show antidepressant-like

effects and seems to facilitate helpless-like behaviour

in non-stressed rats (Figures 2 and 3, Joca et al. 2006),

suggesting that the blockade of the noradrenergic

system in this region could prevent the development

of stress-induced behavioural deficits. In agreement

with this proposal, systemic administration of a

b-adrenergic receptor antagonist attenuated the

development of PTSD in humans that had recently

been exposed to severe trauma (Vaiva et al. 2003).

On the other hand, facilitation of noradrenergic

neurotransmission within the ventral hippocampus

seems to protect against stress effects (Petty and

Sherman 1980; Sherman and Petty 1980) and prevents
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Figure 2. Post-stress facilitation of noradrenaline-mediated neurotransmission in the dorsal hippocampus does not prevent the behavioural

consequences of stress. Male Wistar rats (n ¼ 11–14) were submitted to inescapable footshocks (40 shocks, 1 mA, 10 s) or habituation

(30 min) in a shuttle box. Immediately afterwards, they received bilateral intra-hippocampal injections of Sal or desipramine (DIM, 3 or

30 nmols/0.5ml), a selective noradrenaline reuptake inhibitor and were tested 24 h later with escapable footshocks (30 sound-signalled shocks,

0.8 mA, 10 s). Data are expressed as the mean ^ SEM number of escape and/or avoidance failures in each block (summation of five individual

trials). There was no significant difference between treatments (modified from Joca et al. (2006), with kind permission from Elsevier).
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learned helpless development. Rats with enhanced

noradrenaline levels within this region do not

develop learned helplessness in response to inescapable

footshocks (Petty and Sherman 1980; Sherman and

Petty 1980). Moreover, noradrenaline release is

increased in the ventral hippocampus during habitu-

ation to repeated stress (Hajos-Korcsok et al. 2000).

These data are in agreement with recent evidence

indicating the existence of important functional

differences between dorsal and ventral regions of the

hippocampus, the first being closely related to

learning/memory processes while the latter would be

more involved in anxiety (Kjelstrup et al. 2002;

Bannerman et al. 2004; Degroot and Treit 2004;

Bertoglio et al. 2006). Thus, it could be speculated that

the facilitation of noradrenergic neurotransmission in

the ventral hippocampus, but not in the dorsal

hippocampus, could attenuate the stress-induced

aversive state and, as a consequence, its emotional

impact, leading to antidepressant-like effects.

Another possibility to explain the involvement of

noradrenergic drugs in stress adaptation would be the

facilitation of serotonergic neurotransmission in the

hippocampal formation. Mongeau et al. (1997)

proposed that the main mechanism of antidepressant

treatments in the hippocampus would be to enhance

5-HT1A and/or to reduce b-adrenergic-mediated

neurotransmission. Both effects could be produced

by antidepressant treatments through parallel or serial

mechanisms involving interactions between the ser-

otonergic and noradrenergic systems.

Noradrenaline, therefore, could play a different role

in modulating stress responses depending on the

hippocampal region. Antidepressant effects induced

by noradrenergic drugs could involve either an

interference with noradrenergic neurotransmission in

the ventral hippocampus or a facilitation of seroto-

nergic neurotransmission in the dorsal hippocampus.

Moreover, the behavioural effects of antidepressants

may also involve interference with noradrenergic

neurotransmission in other brain structures apart

from the hippocampal formation such as the amygdala

(Strange et al. 2003).

Dopaminergic system

Dopamine is another monoamine proposed to play an

important role in the regulation of mood and

behaviour, particularly in motivated and reward-

related behaviour (Koob 1996; Berridge and Robinson

1998; Hyman et al. 2006). It is also implicated in the

neurobiology of depression as well as in the mechanism

of action of antidepressants (Gambarana et al. 1995;

D’Aquila et al. 2000; Basso et al. 2005; Gershon et al.

2006; Nestler and Carlezon 2006). However, much of

the attention aimed at understanding the role of

dopamine in the pathophysiology of depression has

been directed to the mesolimbic dopamine pathways,

where a dopaminergic hypofunction has been related to

the decreased motivation and/or anhedonia observed

in human depressive states (Nelson and Charney 1981;
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Figure 3. Pre-stress facilitation of noradrenaline-mediated neurotransmission in the dorsal hippocampus also does not prevent the

behavioural consequences of stress. However, it facilitates helpless behaviour in control (non-stressed) animals. Male Wistar rats (n ¼ 7–19)

received bilateral intra-hippocampal injections of Sal or desipramine (DIM, 30 nmols/0.5ml) and immediately afterwards were submitted to

inescapable footshocks (40 shocks, 1 mA, 10 s) or habituation (30 min) in a shuttle box. All animals were tested 24 h later with escapable

footshocks (30 sound-signalled shocks, 0.8 mA, 10 s). Data are expressed as the mean ^ SEM number of escape and/or avoidance failures in

each block (summation of five individual trials). * Indicates significant difference from respective Sal-treated group (t-test, p , 0.05, (modified

from Joca et al. (2006), with kind permission from Elsevier).
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 Cabib and Puglisi-Allegra 1996; Willner 1997;

D’Aquila et al. 2000; Nestler and Carlezon 2006).

Not much is known about the role of hippocampal

dopaminergic neurotransmission in the neurobiology

of stress-related disorders. Dopamine levels are

altered in the hippocampus in response to stress

(Vijayakumar and Meti 1999; Zangen et al. 1999;

Harvey et al. 2005; Dronjak and Gavrilovic 2006).

These levels are increased in congenitally “depressive”

rats (Zangen et al. 1999; Yadid et al. 2000) or in rats

submitted to an acute exposure to different inescap-

able stressors (Harvey et al. 2005). On the other hand,

chronic exposure to stress induces significant

reduction of dopamine content in the hippocampus

(Sunanda et al. 2000; Dronjak and Gavrilovic 2006).

Chronic antidepressant treatment can counteract the

acute neurochemical imbalances induced by stress

(Zangen et al. 1999; Yadid et al. 2000), increasing and

decreasing the responsiveness of hippocampal dopa-

mine D2 and D1-like receptors, respectively (Bijak and

Smialowski 1988; Bijak 1993). In accordance with

these data, the mRNA for D5 receptors (D1 family) is

increased in the hippocampus of patients suffering

from unipolar depression (Knable et al. 2004)

Several pieces of evidence indicate that the facili-

tation of dopaminergic neurotransmission induces

neuroprotective effects in the hippocampus (Takata

et al. 2000; Chlan-Fourney et al. 2002; Bai et al. 2003).

Subchronic treatment with D2 and D3 receptor

agonists, for example, induces a significant increase

in expression of the anti-apoptotic protein Bcl-2 in

the hippocampus (Takata et al. 2000). Corroborating

these results, several groups have shown that chronic

treatment with D2 antagonists induces significant

decreases in the hippocampal expression of BDNF

mRNA and protein (Angelucci et al. 2000; Lipska et al.

2001; Chlan-Fourney et al. 2002; Bai et al. 2003) and

TrkB (Angelucci et al. 2000). These results suggest that

the facilitation of dopaminergic neurotransmission

within the hippocampus may enhance BDNF

expression, which is believed to mediate the beha-

vioural effects of antidepressants (Saarelainen et al.

2003). Studies using chronic treatment with prefer-

ential inhibitors of dopamine uptake that possess

antidepressant properties could test this hypothesis.

These data support the involvement of the hippocam-

pal dopaminergic system in the neurobiology of stress-

related disorders and in the behavioural effects of

antidepressant drugs. However, additional evidence is

needed to clarify the role of hippocampal dopaminergic

neurotransmission in adaptation to stress and in the

mechanism of action of antidepressants. For example,

infusion of drugs that modulate dopaminergic neuro-

transmission into the hippocampus of rats submitted

to appropriate models predictive of antidepressant

effects could further clarify the role of hippocampal

dopamine in stress neurobiology and in the mechanism

of antidepressant drugs.

Glutamatergic and nitrergic systems

Several preclinical studies have indicated that repeated

treatment with NMDA receptor antagonists possesses

antidepressant-like properties in different animal

models (Sofia and Harakal 1975, Trullas and Skolnick

1990; Petrie et al. 1999; Berman et al. 2000). These

data are supported by clinical evidence showing

that drugs that reduce glutamatergic tone may play a

role in the treatment of depression (Sanacora et al.

2004, 2006; Zarate et al. 2004, 2006). For example,

chronic treatment with riluzole, a drug that decreases

glutamate release (Wang et al 2004) and increases

glutamate uptake (Azbill et al. 2000; Frizzo et al.

2004), induces antidepressant and anxiolytic effects

(Zarate et al. 2004; Mathew et al. 2005). It also

improves the mood of depressed patients resistant to

antidepressants (Sanacora et al. 2006).

Although the mechanisms responsible for these

effects are not still understood, several lines of

evidence have pointed to the hippocampus as an

important target for these drugs. The hippocampal

glutamatergic system is activated by stress leading to

local increase of glutamate release (Moghaddam

1993; Sunanda et al. 2000) through a mechanism

that seems to be corticoid-dependent (Abraham et al.

1998). This increased glutamate level has been

proposed to mediate stress-induced morphological

damage to the hippocampus (Magariños and McEwen

1995b; McEwen 1996; Gould et al. 1997; Cameron

et al. 1998; Gould and Tanapat 1999; Nacher and

McEwen 2006). Moreover, glutamate is crucial for

LTP (Lynch 2004) and positively modulates hippo-

campal theta rhythm (Puma and Bizot 1999;

Bonansco et al. 2002; Leung and Shen 2004), thus

facilitating learning/memory processes. Systemic

administration of a NMDA receptor antagonist

prevents the activation of the hippocampus in

response to inescapable stress (Titze-de-Almeida

et al. 1994a,b). Also, blockade of hippocampal

glutamatergic neurotransmission disrupts the acqui-

sition of fear conditioning (Cammarota et al. 2004;

Quinn et al. 2005; Roesler et al. 2006). Therefore,

stress-induced glutamate release within the hippo-

campus may facilitate the formation of aversive

memories and at high levels, promote hippocampal

damage. These processes would then contribute to the

development of stress-induced behavioural changes.

The aforementioned hypothesis is further sup-

ported by the observation that intra-hippocampal

administration of NMDA antagonists prevents the

anxiogenic effect induced by stress (Padovan et al.

2000) and induces antidepressant-like effects in rats

(Padovan and Guimarães 2004). In accordance with

these behavioural data, chronic treatment with

antidepressants reduces glutamate release in hippo-

campal synaptosomes (Bonanno et al. 2005), down-

regulates NMDA receptors (Boyer et al. 1998) and
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 decreases glutamate responsiveness (Zahorodna and

Bijak 1999). Besides, antidepressant drugs that reduce

glutamate levels, such as tianeptine, prevent stress-

induced alterations in hippocampal neuronal mor-

phology (McEwen and Chattarji 2004; Reagan et al.

2004) whereas drugs that block glutamate receptors

enhance neurogenesis (Cameron et al. 1995, 1998;

Yoshimizu and Chaki 2004; Nacher and McEwen

2006) and prevent stress-induced atrophy (Magariños

and McEwen 1995b; McEwen 1996). Therefore,

modulation of the glutamatergic system seems to play

a key role in the regulation of synaptic plasticity in the

hippocampus. Normalization of stress-induced altera-

tions in glutamate function, on the other hand, would

produce antidepressant effects. This normalization

could be achieved via mechanisms targeting the

glutamatergic synapse directly or indirectly, for

example, involving other neurotransmitters such as

serotonin, noradrenaline, or GABA. All these systems

closely interact in the hippocampal circuitry (Vizi and

Kiss 1998).

The observation that glutamate, by acting on

NMDA receptors, can evoke the release of NO

(Garthwaite et al. 1988) lead to the suggestion that the

antidepressant-like effects produced by NMDA

antagonists would result from reduced NO production

in the brain. Jefferys and Funder (1996) first reported

that systemic inhibition of the enzyme nitric oxide

synthase (NOS) produces an antidepressant-like

effect in the forced swimming test (FST) in rats, an

effect reversed by pretreatment with L-arginine, the

substrate for NOS. Besides this observation, it was

reported that chronic treatment with nitro-L-arginine,

a NOS inhibitor, induces down-regulation of cortical

b-adrenoceptors, an effect observed in rodents

following chronic treatment with many clinically

effective antidepressants (Karolewicz et al. 1999).

These effects seem to be due to the inhibition of

neuronal NOS (nNOS) because the administration of

preferential inhibitors of this isoform also induced

dose-dependent antidepressant-like effects in rodents

(Yildiz et al. 2000).

Experimental and clinical studies suggest the

existence of a dysregulation of the nitrergic system in

stress-related disorders. Depressed patients show

elevated plasma nitrate levels (Suzuki et al. 2001)

and significant mood improvement in response to the

systemic administration of methylene blue, a drug that

inhibits NOS/ guanylate cyclase (Naylor et al. 1987).

Moreover, enhanced hippocampal expression of the

DG CA3 CAI

A

B

C

Figure 4. Subchronic treatment with a NOS inhibitor increases BDNF expression in the hippocampus. The figure shows stained cells for

BDNF in the hippocampal formation after (a) vehicle, (b) imipramine (15 mg/kg) and (c) 7-nitro-indazole (60 mg/kg), a preferential nNOS

inhibitor, treated rats. They received three i.p. injections (0, 5 and 24 h) and were killed 24 h after the last injection, the hippocampus was

removed and processed for BDNF immunohistochemistry (primary anti-BDNF antibody: rabbit polyclonal antibody raised against a peptide

mapping at the N-terminus of BDNF of human origin, Santa Cruz Biotechnology, Santa Cruz, CA, USA; 1:800). Note BDNF signal (dark

stained cells) only in (b) and (c). DG, dentate gyrus; CA, ammons horn. Bar ¼ 150mm.
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 nNOS enzyme is reported in post-mortem brain of

depressed patients (de Oliveira et al. 2000a,b). Again,

stress seems to contribute to this neurochemical

dysregulation, since repeated exposure to inescapable

stress leads to enhanced expression of NOS and

enhanced levels of nitrogen oxides in the hippocampus

(Harvey et al. 2004b, 2005).

Systemic administration of clinically effective

antidepressants reduces NOS activity in the hippo-

campus (Luo and Tan 2001; Wegener et al. 2003)

and local administration of a nNOS inhibitor

immediately before or after an inescapable stress

induces antidepressant-like effects in rats (Joca and

Guimarães 2006). Increased NO levels in the

hippocampus, therefore, could contribute to the

development of stress-induced behavioural conse-

quences. The mechanisms mediating these effects,

however, are not completely understood. NO is

proposed to modulate synaptic transmission in

several ways, the most common being through

activation of soluble guanylate cyclase (sGC) and

nitrosilation of proteins and enzymes (Snyder and

Ferris 2000; Prast and Philippu 2001). As a result,

NO can modulate neuronal excitability and neuro-

transmitter release (Snyder and Ferris 2000; Prast

and Philippu 2001). It can decrease serotonin levels

in several brain regions (Kiss 2000; Prast and

Philippu 2001), including the hippocampus (Wene-

ger et al. 2000). The antidepressant-like profile of

NOS inhibitors in the FST was similar to that of

serotonin selective reuptake inhibitors and depended

on intact serotonin neurotransmission (Harkin et al.

2003). Taken together, these data suggest that the

increase in NO production that follows stressful

situations can impair serotonergic transmission in the

brain, interfering with the adaptation to repeated

stress exposure. On the other hand, activation of 5-

HT1A receptors negatively regulates glutamate release

(Dijk et al. 1995; Matsuyama et al. 1996) and NO

synthesis (Strosznajder et al. 1996), suggesting that

these systems mutually interact in the hippocampal

formation to modulate behaviour under stressful

conditions.

NO could also change neuronal function by direct

neurotoxic effects. In primary cortical culture admin-

istration of NOS inhibitors prevents cell death elicited

by NMDA and related excitatory amino acids, thus

suggesting that NO mediates glutamate-induced

neurotoxicity (Dawson et al. 1991). Besides, in

cultured hippocampal neurons, NO can decrease

BDNF release and inhibition of nNOS enhances

hippocampal BDNF expression (Canossa et al. 2002).

Serotonin glucocorticoids

connectivity

cellular  resilience

neurogenisis

connectivity

cellular resilience

neurogenisis

Helplessness
Depressive  symptoms

Hippo campal
functioning

Coping
Stress  adaptation

–

–

+

Severe        stress  (glutamate,  nitric
oxide, glucocorticoids)

Figure 5. Severe stress, activating the NMDA/NO pathway, can impair normal hippocampal functioning, predisposing to helplessness and

depressive symptoms. Conversely, serotonin can counteract the stress-induced damage to the hippocampus, restoring normal functioning and

allowing coping and stress adaptation. These effects are probably mediated by 5-HT1A receptors. GCs have a permissive role in NMDA

damaging effects and at high levels, can impair 5-HT1A-mediated neurotransmission. Clinical studies using tryptophan depletion and results

obtained with direct intra-hippocampal drug injections suggest that serotonin, glutamate and NO can also interfere with hippocampal

function independently of cellular remodelling and neurogenesis.
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 We observed similar effects in vivo after treatment with

a nNOS inhibitor that produced antidepressant-like

effects in the FST (Figure 4). Moreover, systemic

inhibition of NO is reported to increase hippocampal

neurogenesis (Pacher et al. 2003; Cardenas et al.

2005; Zhu et al. 2006). These data suggest that stress-

induced release of NO could mediate pathological

processes within the hippocampus that account for the

plastic changes and behavioural alterations seen in

stressed animals. Therefore, inhibition of NO syn-

thesis could protect the hippocampus from stress-

induced effects, thus allowing behavioural adaptation

to occur in situations of chronic exposure to stress.

Based on these data, it is possible to speculate that

an enhanced NMDA/NO-pathway facilitates the

development in animals of behavioural deficits

induced by stress and thus may contribute to the

pathophysiology of stress-related disorders, such as

depression and PTSD. Drugs that attenuate NMDA

and/or NO-mediated neurotransmission would offer

an alternative treatment for these disorders, either

alone or in combination with antidepressant drugs

(Zarate et al. 2006).

Conclusion

Stress-induced behavioural changes are a complex

phenomenon that certainly involves more than one

structure. However, numerous pieces of evidence have

pointed to the hippocampal formation as an important

target for stress and antidepressant-induced effects.

Several main neurotransmitter systems in the hippo-

campus are related to stress effects. Serotonin, by

acting on 5-HT1A receptors in the dorsal hippo-

campus, facilitates adaptation to severe inescapable

stress. A failure in this system induced by severe stress

and/or high corticoid levels would predispose to the

development of stress-induced behavioural deficits.

This process would be facilitated by glutamate and

NO. Drugs that facilitate 5-HT1A- or attenuate

glutamatergic/nitrergic-mediated neurotransmission

in the hippocampal formation, on the other hand,

would promote adaptation to stress and induce

antidepressant-like effects (Figure 5). The role of

noradrenaline in these processes is less clear and may

differ depending on the specific hippocampal region

(dorsal vs. ventral).
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Oitzl MS, Reichardt HM, Joëls M, de Kloet ER. 2001. Point

mutation in the mouse glucocorticoid receptor preventing DNA

binding impairs spatial memory. Proc Natl Acad Sci USA

98:12790–12795.

Okugawa G, Omori K, Suzukawa J, Fujiseki Y, Kinoshita T, Inagaki

C. 1999. Long-term treatment with antidepressants increases

glucocorticoid receptor binding and gene expression in cultured

rat hippocampal neurones. J Neuroendocrinol 11(11):887–895.

Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A,

Westphal H, Goldman SA, Enikolopov G. 2003. Nitric oxide

negatively regulates mammalian adult neurogenesis. Proc Natl

Acad Sci USA 100(16):9566–9571.
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