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REVIEW ARTICLE

Novel Phenethylamines and Their Potential Interactions
With Prescription Drugs: A Systematic Critical Review

Funda Inan, MSc,* Tibor M. Brunt, PhD,†‡ Ramon R. Contrucci, MSc,§ Laura Hondebrink, PhD,§
and Eric J. F. Franssen, PhD*

Background: The novel phenethylamines 4-fluoroamphetamine
(4-FA) and 2,5-dimethoxy-4-bromophenethylamine (2C-B) fall in
the top 10 most used new psychoactive substances (NPSs) among
high-risk substance users. Various phenethylamines and NPS are
also highly used in populations with mental disorders, depression, or
attention deficit hyperactivity disorder (ADHD). Moreover, NPS use
is highly prevalent among men and women with risky sexual
behavior. Considering these specific populations and their frequent
concurrent use of drugs, such as antidepressants, ADHD medication,
and antiretrovirals, reports on potential interactions between these
drugs, and phenethylamines 4-FA and 2C-B, were reviewed.

Methods: The authors performed a systematic literature review on
4-FA and 2C-B interactions with antidepressants (citalopram,
fluoxetine, fluvoxamine, paroxetine, sertraline, duloxetine, bupro-
pion, venlafaxine, phenelzine, moclobemide, and tranylcypromine),
ADHD medications (atomoxetine, dexamphetamine, methylpheni-
date, and modafinil), and antiretrovirals.

Results: Limited literature exists on the pharmacokinetics and
drug–drug interactions of 2C-B and 4-FA. Only one case report
indicated a possible interaction between 4-FA and ADHD medica-
tion. Although pharmacokinetic interactions between 4-FA and pre-
scription drugs remain speculative, their pharmacodynamic points
toward interactions between 4-FA and ADHD medication and anti-
depressants. The pharmacokinetic and pharmacodynamic profile of

2C-B also points toward such interactions, between 2C-B and pre-
scription drugs such as antidepressants and ADHD medication.

Conclusions: A drug–drug (phenethylamine-prescription drug)
interaction potential is anticipated, mainly involving monoamine
oxidases for 2C-B and 4-FA, with monoamine transporters being
more specific to 4-FA.

Key Words: NPS, phenethylamine, drug interactions, antiretrovi-
rals, ADHD

(Ther Drug Monit 2020;42:271–281)

INTRODUCTION
The global market for recreational and addictive

substances has been flooded with a variety of molecules,
new psychoactive substances (NPSs). These substances can
be subdivided into chemical classes, based on their molecular
structure. The European Early Warning System recently
reported more than 700 different molecules, including
synthetic cannabinoids, synthetic cathinones, arylalkyl-
amines, and phenethylamines.1,2

Among the most popular and prevalent NPS is the
chemical class phenethylamines, which includes classic drugs
with stimulatory properties such as amphetamine, metham-
phetamine, and 3,4-methylenedioxymethamphetamine
(MDMA) or “ecstasy.”3 In the recent European figures on
NPS consumption and seizures by law enforcement, novel
phenethylamines rank third, after synthetic cathinones and
synthetic cannabinoids.4 Many novel phenethylamines have
emerged; 2,5-dimethoxy-4-bromophenethylamine (2C-B), 4-
fluoroamphetamine (4-FA), 6-APB (benzofury), and 25X-
NBOMe (N-Bomes or n-bombs).5–9 Although numerous sub-
stances are manufactured and marketed yearly, only a handful
lasts longer on the market, due to legislative actions or the
poor performance of some substances to the users.4 However,
among phenethylamines, 2C-B and 4-FA seem to have with-
stood these challenges.10

The phenethylamine amphetamine typically induces
increased energy, stamina, appetite suppression, and a boost
in self-confidence, while other phenethylamines such as
MDMA and 3,4-methylenedioxyethamphetamine (MDEA)
also provoke entactogenic effects such as the feeling of
closeness to others, increased sociability, talkativeness, and
increased senses to touch or music.11 Besides their stimula-
tory or entactogenic properties, many new phenethylamines
have a profound hallucinogenic effect.

Presently, several phenethylamines are widely used as
recreational drugs, although their therapeutic use has recorded
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a global increase in recent decades. For instance, dexamphet-
amine is used to treat attention deficit hyperactivity disorder
(ADHD),12,13 pseudoephedrine as a decongestant,14 and
phentermine as an appetite-suppressant.15 Moreover, the ther-
apeutic use of MDMA for post-traumatic stress disorders is
currently being investigated.16–18

The global prevalence of the use of specific new
synthetic phenethylamines is uncertain, although phenethyl-
amines constitute 18% of all NPS seized.4 Furthermore, NPS
use is highly prevalent among high-risk substance users, with
4-FA and 2C-B ranked among the top 10, in a number of
European countries.19,20 2C-B is also among the most prev-
alent psychedelic NPS used in the United States.21

Interestingly, 2C-B and 4-FA represent both ends of the phe-
nethylamine spectrum of action: they have both stimulatory
and hallucinatory properties.

In a study performed throughout the European Union, it
seems that in addition to the highly prevalent NPS use within
groups of high-risk substance users (prisoners, homeless
people, and addicts), highly prevalent NPS use is also
recorded among men and women who engage in risky sexual
intercourse, mainly in the gay community.22–24 This practice
is specifically high in the United Kingdom, where it has been
repeatedly observed in rituals referred to as “slamming” (in-
jecting drugs or “chemsex”—taking different drugs concom-
itantly). “Slamming” is significantly more often associated
with hepatitis-C and HIV infections in gay men,25,26 mark-
edly increasing the likelihood of patients being on antiretro-
virals, while concurrently on NPS.

Generally, NPS-prescription drug interactions are ex-
pected. For instance, interactions between illicit and novel
phenethylamines and antiretrovirals have been described.27,28

Furthermore, prevalence of mental disorders such as ADHD

and depression is high among the general population, partic-
ularly young adults, with a pooled prevalence of 5.3% for
ADHD29 and approximately 10% for depression.30 Illicit sub-
stance use is well known to coincide with these conditions.
Therefore, interactions between prescribed antidepressants
and ADHD medication, with (illicit) substances such as phe-
nethylamines, are expected.31–35

Therefore, in this article, we reviewed the possible
interactions between prescription drugs and NPS of the
phenethylamine class. We also described the pharmacokinet-
ics and pharmacodynamics of 2 representative and popular
novel phenethylamines (2C-B and 4-FA), as well as their
overlap in the mechanism of action, with the 3 anticipated
classes of prescription drugs that might interact: antidepres-
sants, ADHD medication, and antiretrovirals. We also out-
lined any clinically relevant interactions.

METHOD

Pharmacokinetics and Pharmacodynamics
To describe the pharmacokinetics and pharmacody-

namics of the single phenethylamines and classes of pre-
scription drugs, we used published reviews and Stahl’s36

Essential Psychopharmacology.

Pharmacokinetics and Pharmacodynamics:
Interactions

We performed a broad search on Pubmed using search
strings for 4-FA and 2C-B, combined with those for pre-
scription drugs (see Supplemental, Supplemental Digital
Content 1, http://links.lww.com/TDM/A384). The prescription
drugs selected were those most likely to coincide with the use

FIGURE 1. Illustrating the effects of 2C-B on serotonin (5-HT). Modulation of different serotonergic targets can contribute to
developing a serotonin syndrome. For instance, 2C-B can inhibit MAO (1), the reuptake of serotonin at higher doses (2), and
activate the 5-HT receptors (3).
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of NPS: antidepressants (citalopram, venlafaxine, paroxetine,
fluoxetine, fluvoxamine, sertraline, bupropion, duloxetine, phe-
nelzine, moclobemide, and tranylcypromine), ADHD medica-
tion (dextroamphetamine, modafinil, atomoxetine, and
methylphenidate), and antiretrovirals (NNRTIs, NRTIs, prote-
ase inhibitors, CCR5 inhibitors, and integrase inhibitors).

Search strings were also used on the specific pharma-
cokinetics and pharmacodynamics of 4-FA, 2C-B, MDMA,
antidepressants, ADHD medication, and antiretrovirals, as
well as bibliographies of the relevant articles. Articles up to
July 2019 were reviewed. Additional information about the
search strings can be found in the Supplemental Digital
Content 1 (see Supplementary information, http://links.
lww.com/TDM/A384).

RESULTS

4-Fluoroamphetamine
4-FA is a phenethylamine NPS, also known as para-

fluoroamphetamine (PFA), 4-FMP, flava, 4floor, 4-fluor, or
Flux CD cleaner5 and has been on the Dutch drugs market for
decades.10 The first formal notification on 4-FA was reported
to the European Monitoring Centre for Drugs and Drug addic-
tion (EMCDDA) in 2008.37 Since 2012, there has been a rise
in the number of emergencies linked to 4-FA use, in the
Netherlands.20

Pharmacokinetics
4-FA is available as a powder, tablet, and liquid, mostly

consumed orally, but also by nasal insufflation. Reported user
doses range from 50 to 150 mg, although some users exceed
150 mg. Above the 150 mg dose, the risk of adverse effects
have been reported to increase, in approximately 1 in every
5 users.10,37 The first observable effects typically start 30
minutes after oral ingestion of 4-FA and peak at 90–120
minutes. The effect might last 4–6 hours, although some users
report a 12-hour duration. The effects observed after intrana-
sal administration of 4-FA occur after a few minutes, and are
more intense, and the duration shorter, compared with those
observed after oral administration.10,37 The half-life of 4-FA
is estimated to be 8–9 hours.38 Chemically, 4-FA only differs
from (dex)amphetamine by a fluorine atom positioned on the

aromatic ring (Table 1). To the best of our knowledge, no data
exist on 4-FA metabolism, which remains challenging to pre-
dict precisely, as adjustments to the chemical structure could
lead to changes in metabolism. For instance, substituting the
fluorine atom for a hydrogen atom may create a more stable
metabolic structure, reducing the metabolism potential, but it
is unlikely that positioning a fluorine atom on the aromatic
ring will lead to a more stable structure.39

Pharmacodynamics
4-FA increases the extracellular concentrations of the

neurotransmitters norepinephrine (NE), dopamine (DA), and
serotonin (5-hydroxytryptamine; 5-HT) in the brain.5 This
increase is attributed to the inhibition of NE, DA, and 5-HT
reuptake transporters (norepinephrine transporter [NET],
dopamine transporter [DAT], and serotonin transporter
[SERT]), as well as the induction of transporter-mediated
release.6 Although the potency of 4-FA to induce DA and
NE release seems comparable with amphetamine, 4-FA is
a more potent 5-HT releaser, comparable with MDMA.
Compared with amphetamine, 4-FA is a less-potent NET
and DAT inhibitor, with a lower DAT/SERT inhibition ratio.
4-FA also binds to the serotonin receptors 5-HT1a, 5-HT2a, 5-
HT2b, and 5-HT2c.6

4-FA evoked more entactogenic effects compared with
amphetamine, but less, compared with MDMA.40 MDMA-
associated entactogenic effects are dependent on the serotoner-
gic effects.6,41 The most common positive effects reported after
4-FA use are stimulatory, euphoric, and empathic effects. The
adverse effects include elevated heartbeat and temperature,
sweating, sleeplessness, dry mouth, jaw tension, and lowered
mood.10,42 Comparing the effects of 4-FA with those of
MDMA and amphetamine showed that the effects lie between
the extremes of MDMA and amphetamine, having less stimu-
latory, but more entactogenic effects, as amphetamine.40

Severe adverse effects also include tachycardia, and in some
cases, myocardial infarction, or hemorrhagic stroke.43

4-Bromo-2,5-Dimethoxyphenethylamine
2C-B (4-bromo-2,5-dimethoxyphenethylamine) be-

longs to the 2C class of phenethylamines and is sometimes
referred to as a hallucinogenic phenethylamine. 2C-B is also

TABLE 1. Pharmacokinetics of 4 Specific Phenethylamines

Drugs of Abuse
Chemical
Structure Substrate Enzyme Inhibition Usual Oral Dose Tmax T1/2

4-FA Not known Not known 50–150 mg, higher doses are
reported10,37

2 h38 8–9 h38

2C-B MAO45 Probably MAO
enzymes51

4–30 mg5 30
min5

1 h5

MDMA CYP2D6, CYP3A4, CYP1A2,
CYP2B6107,108

CYP2D6109,110 100–120 mg108 2 h108 5–10 h108

Dexamphetamine CYP2D664,65,111 Not known 5–60 mg65 3 h65 12 h65

Only CYP450 and MAO enzymes are included in this table.
CYP, cytochrome P450; 2C-B, 4-bromo-2,5-dimethoxyphenethylamine; MDMA, 3,4-methylenedioxymethamphetamine.
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known as nexus, venus, bromo, bees, erox, synergy, perform-
ax, or toonies.

2C-B was first synthesized around the 1970s for
psychotherapeutic use but was never marketed because of
its lack of empathogenic effects and the gastrointestinal side
effects.5,40,44

Pharmacokinetics
Limited literature exists on the human pharmacokinet-

ics of 2C-B. Based on user reports, 2C-B user dosage ranges
from 4 to 30 mg orally, and its effects last for 4–8 hours. An
animal study reported the following parameters: an elimina-
tion half-life of 1 hour; a volume of distribution, 16 L/kg;
clearance, 9.8 L/h; and Tmax, 30 minutes.5

2C-B is metabolized through deamination with mono-
amine oxidases (MAO-A and MAO-B). MAO-mediated
monoamine breakdown can be decreased after 2C-B expo-
sure, possibly restoring the monoamines. CYP enzymes seem
to have no role in 2C-B metabolism.45 2C-B metabolism
results in several metabolites; its oxidative deamination in
human hepatocytes results in the formation of 2-4-bromo-
2,5-dimethoxyphenyl-ethanol (BDMPE), 4-bromo-2,5-
dimethoxyphenylacetic acid (BDMPAA), and 4-bromo-2,5-
dimethoxybenzoic acid (BDMBA), which are further deme-
thylated.46 In humans, the 2C-B metabolites, 2C-B-CBA and
2C-B-ALC, are excreted in urine.45–48

Pharmacodynamics
2C-B inhibits DAT, NET, and SERT, although at

higher concentrations, compared with 4-FA, which could
result in higher extracellular brain levels of monoamines.
This mechanism is of minor relevance during “normal” rec-
reational use, which usually results in low mM serum lev-
els.49,50 2C-B activates the 5-HT2C receptor and binds to a1-
adrenoreceptor, 5HT1A, 5HT1B, and 5HT1c receptors. 5HT2a

stimulation generally causes hallucinogenic effects.5,6,40 In
animal studies, 2C-B (25 mg/kg) increased DA release in the
nucleus accumbens.51 2C-B also inhibits MAO en-
zymes,51,52 provoking stimulatory and hallucinogenic ef-
fects (Figure 1). At lower doses (,10 mg), stimulatory
effects, euphoria, and increased visual and auditory sensa-
tions have been reported, and moderate doses (10–20 mg)
produce hallucinations. At higher doses (.20 mg), more
unpleasant hallucinations and sympathomimetic effects such
as tachycardia, hypertension, and hyperthermia have been
reported.5,44

Antidepressants
Before the 80s, depression was treated using MAO

inhibitors or tricyclic antidepressants.53 However, in recent
times, selective serotonin reuptake inhibitors (SSRIs) are
most often used, especially in the outpatient setting, where
they are widely prescribed.54 After the SSRIs, serotonin-
norepinephrine reuptake inhibitors (SNRIs), such as duloxe-
tine and venlafaxine, were registered for the treatment of
depression. Another drug introduced on the market after
SSRIs was bupropion, known to inhibit DAT and NET.

Pharmacokinetics
For all SSRIs and SNRIs, the cytochrome P450 enzyme

involved in phase I metabolism is CYP2D6. Paradoxically,
this enzyme is also inhibited by these drugs. Other enzymes
involved in metabolism or drug inhibition are shown in
Table 2.53–55 CYP inhibition by these drugs may differ in
potency or duration. Some drugs such as paroxetine, are
strong CYP2D6 inhibitors, while drugs like fluvoxamine,
are weak inhibitors.55 Fluoxetine has a half-life of 4–6 days,
while its metabolite norfluoxetine, has a half-life of 4–16
days,53 and sertraline, a half-life of 26 hours.53 The CYP
enzyme inhibiting properties of fluoxetine may continue for
weeks, even after drug discontinuation.55 Other MAO inhib-
itors like tranylcypromine and phenelzine, are not CYP sub-
strates, and do not have an effect on CYP enzymes. They both
inhibit MAO-A and MAO-B irreversibly. Moclobemide is
a CYP2C19 substrate and a reversible MAO-A inhibitor,
which also inhibits CYP2C9, CYP2D6, and CYP1A2
enzymes.53,56

Pharmacodynamics
SSRIs were developed to selectively inhibit SERTs in

the brain, thereby markedly elevating postsynaptic serotonin
levels.57 Subsequently, freely available serotonin is able to
bind to the serotonin receptors (5-HTR) in the brain. After
this increased neurotransmitter–receptor interaction, the re-
sulting receptor (mainly 5-HT1a) desensitization is the mech-
anism ultimately responsible for the antidepressant effects of
SSRIs.58 Although SSRIs all show high affinity for SERT,
some also partially block other monoamine transporters, DAT
and NET.59 In fact, sertraline also shows a reasonably high
affinity for DAT.53 Venlafaxine acts as an SSRI at low doses
(,200 mg/d), due to its SERT-binding selectivity, and as an
SNRI at higher doses (.375 mg/d) since the effects on the
NET can be achieved with higher doses. Duloxetine is an
antidepressant known to potently inhibit SERT and NET, at
regular starting doses.60 Monoamine transporter inhibition is
related to the therapeutic effects of antidepressants, and in-
hibiting of SERT and NET may result in better response rates
in depression treatment.60

MAO enzyme inhibitors (MAOI) act differently as
antidepressants because they inhibit neurotransmitter deami-
nation or turnover metabolism. Serotonin and (nor)adrenalin
are primarily deaminated by MAO-A, while phenethylamines
are primarily deaminated by MAO-B. MAO-A and MAO-B
can breakdown DA or tyramine, while a combination of
MAOI and serotonergic drugs can trigger severe serotonin
syndrome, leading to fatalities.56,61

ADHD Medication
ADHD is characterized by symptoms such as impul-

sivity, hyperactivity, and inattention.62 Although ADHD was
initially believed to affect only children, it has been shown to
also continue throughout adulthood.63

Pharmacokinetics
Atomoxetine and (d-)amphetamine are metabolized by

CYP2D6. However, their effect on CYP enzyme activity is
unknown.36,64,65 Modafinil is metabolized by CYP3A4 and
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inhibits and induces CYP enzymes.36,66 Methylphenidate is
primarily metabolized by de-esterification, to ritalinic acid.
Other minor metabolized products include de-esterified

lactam through oxidative metabolism.67 It is not known if
methylphenidate is metabolized by or has no effect on CYP
enzymes.

TABLE 2. Antidepressants, Drugs of Abuse, and ADHD Medication: Enzyme Inhibition and Effect on Neurotransmitter
Transporters

Name Substrate Enzyme Inhibition
Inhibiting

NET
Inhibiting
SERT

Inhibiting
DAT

Drugs of abuse

4-FA Not known Not known +++ + ++

2C-B MAO-enzymes45 Probably MAO enzymes51 +/2 +/2 2

MDMA CYP2D6, CYP3A4, CYP1A2,
CYP2B6107,108

CYP2D6109,110 +++ + ++

Antidepressants: Selective
serotonin reuptake inhibition
(SSRI)

Citalopram Main: CYP2C19 Weak: CYP2D6, CYP2C19,
CYP1A253,55

2 +++ 2

Minor: CYP2D6, CYP3A453–55

Paroxetine Main: CYP2D6 Strong: CYP2D653,55 ++ +++ +

Minor: CYP3A4, CYP1A2,
CYP2C1953,54

Fluoxetine Main: CYP2D6, CYP2C9 Strong: CYP2D6 + +++ 2

Minor: CYP2C19, CYP3A4,
CYP3A553–55

Moderate: CYP2C9

Weak to moderate: CYP2C19,
CYP3A453,55

Fluvoxamine Main: CYP2D6 Strong: CYP1A2, CYP2C19 + +++ 2

Minor: CYP1A253–55 Moderate: CYP2C9, CYP3A4

Weak: CYP2D655

Sertraline Main: CYP2D6, CYP2C19 Weak to moderate: CYP2D6 + +++ ++

Minor: CYP2C9, CYP3A4,
CYP2B653–55

Weak: CYP2C9, CYP2C19,
CYP3A453,55

Antidepressants: Serotonin and
norepinephrine reuptake
inhibition (SNRI)

Duloxetine Main: CYP2D6, CYP1A253,55 Moderate: CYP2D655 ++ +++ +

Venlafaxine Main: CYP2D6 Weak: CYP2D653,55 + +++ 2

Minor: CYP3A453,55

Antidepressants: Dopamine and
norepinephrine reuptake
inhibitor

Bupropion Main: CYP2B6 Moderate CYP2D653,55 2 2 +

Minor: CYP1A2, CYP2D6,
CYP3A4, CYP2C953,55,113

Antidepressants: MAO
inhibitors

Moclobemide CYP2C1953 MAO a inhibitor, CYP2C9,
CYP2D6, CYP1A253

2 2 2

Tranylcypromine Not known MAO a and MAO B inhibitor56 2 2 2

Phenelzine Not known MAO a and MAO B inhibitor56 2 2 2

ADHD medication

(Dex)-amphetamine* CYP2D664,65 Not known +++ + ++

Modafinil CYP3A436 CYP2C19, CYP2C966 2 - +

Atomoxetine CYP2D636 Not known +++ +++ 2

Methylphenidate Not known Not known +++ +/2 +++

Only CYP450 and MAO enzymes are included on this table. The effect of the antidepressants on neurotransmitters is adopted from Wille et al and Richelson et al.53,60 The effect of
drugs of abuse on the neurotransmitter transporters is adapted from Nugteren-van Lonkhuyzen et al.5 The effect of ADHD medication on the neurotransmitter transporters is adapted
from Ding et al, Ballon et al, and Luethi et al.75,76,112

2, very low or no effect; +, ++, and +++: moderate to high potency. These findings were obtained in experimental animal models and/or cloned cell lines.
*The illustrated effect of (dextro)amphetamine on neurotransmitter transporters is based on amphetamine.
CYP, cytochrome P450; 2C-B, 4-bromo-2,5-dimethoxyphenethylamine; MDMA, 3,4-methylenedioxymethamphetamine; NET, norepinephrine transporter; SERT, serotonin

transporter; DAT, dopamine transporter.
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Pharmacodynamics
Most ADHD medications aim at alleviating symptoms

of ADHD through a gradual increase in brain NE and
DA.68,69 ADHD is generally assumed to arise from defects
in the dopaminergic system, mainly the dopamine-4 receptor
and the DAT-1 transporter, all involved in the modulation of
attention to environmental stimuli.70 D-amphetamine and
methylphenidate are potent DAT and NET blockers, mediat-
ing an increase in free monoamines, for attention improve-
ment in ADHD patients.71 Dexamphetamine is a weak DAT
inhibitor, moderately potent NET inhibitor, and a very weak
SERT inhibitor.72 Dexamphetamine is also weakly releases
serotonin.73 Methylphenidate blocks DAT and NET and is
a 5-HT1a agonist.71

Conversely, a novel medication, atomoxetine, was devel-
oped because it almost exclusively blocks the NET, showing
less abuse liability, similar to the psychostimulants, which block
both NET and DAT.74 In a study with monkeys, atomoxetine
inhibited SERT and NET.75 Similar to atomoxetine, modafinil

was introduced as a novel ADHD therapy because it seems to
lack abuse liability. Its mechanism of action is less well under-
stood, although it involves inhibition of the GABAergic input to
histaminergic neurons, thereby influencing wakefulness and
alertness.76

HIV (Antiretroviral) Medication
HIV medications, in general, are a pharmacologically

diverse group of substances, protease inhibitors that disrupt
virus development, using nucleotide reverse transcriptase
inhibitors (NRTI) to break down reverse transcriptase, and
non-nucleoside reverse transcriptase inhibitors (NNRTI) to
break down the conversion of RNA into DNA.77

Pharmacokinetics
Antiretrovirals are mostly metabolized by CYP3A4,78,79

although other CYP enzymes also play a role. For instance,
ritonavir is metabolized by CYP3A4, as well as CYP2D6,
CYP1A2, and CYP2B6.79 Efavirenz is metabolized by

TABLE 3. Antiretroviral Medication: Metabolism and Effects on Enzymes

Substrate Enzyme Inhibition Enzyme Induction

Non-nucleoside reverse transcriptase
inhibitors (NNRTIs)

Efavirenz Major: CYP2B6, CYP3A478,79 Not known Moderate: CYP3A4, CYP2B6

Weak: CYP2C1978,79

Etravirine Major: CYP3A4 Weak: CYP2C19, CYP2C978,80 Moderate: CYP3A478,79

Minor: CYP2C19, CYP2C978–80

Nevirapine Major: CYP3A4, CYP2B678 Not known Strong/moderate: CYP2B6

Moderate/weak: CYP3A478,79,114

Rilpivirine Major: CYP3A479,115 Not known At higher doses (above therapeutic):
CYP3A479

Protease inhibitors

Atazanavir Major: CYP3A479 Strong: CYP3A479 Not known

Darunavir Major: CYP3A478,79 Strong: CYP3A4 Not known

Moderate: CYP2D679

Fosamprenavir Major: CYP3A4 Moderate: CYP3A479 Not known

Minor: CYP2D6, CYP2C1979

Lopinavir Major: CYP3A479,116 CYP3A479,116 Not known

Ritonavir Major: CYP3A4 Strong: CYP3A4 CYP1A2, CYP2C19, CYP2C9,
CYP2B6, and CYP3A478,117Minor: CYP2D6, CYP2B6,

CYP1A278,117,118
Moderate: CYP2D678,117,118

Saquinavir Major: CYP3A478,119 Moderate: CYP3A4 Not known

Weak: CYP2C978,79,119

Tipranavir Major: CYP3A478,79,120 CYP3A4, CYP2D6, CYP1A2,
CYP2C9, CYP2C1978,79,120

CYP3A4120

Fusion inhibitor

Enfuvirtide Not known Not known Not known

Integrase inhibitors

Dolutegravir Minor: CYP3A478,79 Not known Not known

Raltegravir Not known Not known Not known

CCR5 inhibitors

Maraviroc Major: CYP3A479,121 Not known Not known

Other, pharmacokinetic enhancer

Cobicistat Major: CYP3A478,79 Strong: CYP3A4 Not known

Weak: CYP2D678,79

CYP, cytochrome P450.
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CYP2B6 and CYP3A4, and etravirine by CYP3A4, CYP2C9,
and CYP2C19,78–80 which also inhibits CYP2C9 and
CYP2C19.78,80 Most other antiretroviral medications seem to
partially inhibit their own metabolism, using CYP3A4. NRTIs
do not affect liver enzymes and are minimally metabolized
through CYP enzymes. Hence, NRTIs are not included in
Table 3.

Pharmacodynamics
To the best of our knowledge, antiretroviral drugs have

no direct effect on the DA, 5-HT, and NE systems, with the
exception of efavirenz, shown in vitro, to be a partial 5-HT2a
and 5-HT2c agonist, and a SERT and DAT blocker.81

However, HIV itself has an effect on DA transmission, where
DA transmission is disrupted. Furthermore, it has been
assumed that drugs of abuse could synergistically disrupt
DA transmission and can contribute to the development of
HIV-associated neurocognitive disorders.82

Interactions Between 4-FA or 2C-B, and
Antidepressants

Thus far, there are no reported clinical cases on the
interactions between antidepressants and 2C-B or 4-FA.
However, publications on the interactions between antidepres-
sants and older phenethylamines, such as MDMA, exist. Seven
healthy volunteers received paroxetine at 20 mg for 3 days, and
on the last day, 100 mg of MDMA was given in a placebo-
controlled, randomized crossover study. MDMA level (area
under the curve) increased by 27% and the Cmax by 17%.83 In
another trial, the psychological effects of MDMA (1.5 mg/kg)
and pretreatment with 40-mg citalopram (IV) were determined
in 16 volunteers, in a double-blinded placebo-controlled study.
Citalopram inhibited MDMA-induced psychological effects.
The authors of the article suggested that the psychological
effects of MDMA were blocked through citalopram action, at
the 5-HT uptake site, to increase 5-HT release.84 Citalopram
reduced MDMA-induced cardiovascular effects such as
increased blood pressure and heart rate but had no effect on
body temperature.85 In another study, the effects of duloxetine
(120 mg) on MDMA (125 mg)-mediated effects, were as-
sessed, in vitro and in vivo. Duloxetine increased blood
MDMA levels, while inhibiting MDMA-mediated effects such
as norepinephrine elevation, blood pressure, and heart rate ele-
vation, as well as subjective drug effects in humans.41 Other
cases have been reported on the simultaneous use of other
antidepressants (MAO inhibitors) and MDMA. One of such
publications reported 4 fatal cases between moclobemide and
MDMA use in Finland. In all 4 cases, the forensic pathologist
concluded the combined use of moclobemide and MDMA as
the cause of death.86 Other drugs were also found in the blood
of all 4 subjects. Another case reported the combined use of
MDMA and the MAO inhibitor, phenelzine, where 1 male
developed marked hypertension, hypertonicity, altered mental
status, and diaphoresis.87 The effect of moclobemide and
MDMA on body temperature and 5-HT release was also inves-
tigated in rats. The MDMA/moclobemide combination resulted
in higher body temperatures, compared with MDMA alone.
MDMA increased 5-HT outflow in the striatum.88

Pharmacodynamically, MDMA has similarities with 2C-B

and 4-FA. Hence, in theory, interactions could be expected
between antidepressants, and 2C-B and 4-FA.

Interactions Between 4-FA or 2C-B and ADHD
Medication

Only one case has been reported on the combination of
4-FA and ADHD medication. In this case report, a patient
who reportedly ingested 800-mg modafinil, drank 2 capfuls of
liquid 4-FA, and insufflated 110-mg methylphenidate, devel-
oped acute dilated cardiomyopathy and myocardial injury.
Modafinil and 4-FA have been associated with cardiomyop-
athy. The authors of the article suggested that the cardiomy-
opathy witnessed in this patient was more related to 4-FA–
induced myopathy, as opposed to modafinil-induced myopa-
thy.89 However, methylphenidate may also cause cardiomy-
opathy.90 Whether the intoxication was due to interactions, or
to effects of either of the single drugs, remains unknown. The
pharmacodynamic properties of these substances overlap at
the inhibition of monoamine reuptake transporters, indicating
the possibility of interactions at this level. No reported cases
on the interaction between 2C-B and ADHD medication were
found. Theoretically, combining 2C-B with drugs that have
monoamine releasing properties such as dexamphetamine and
methylphenidate could increase intoxication risks, due to 2C-
B-mediated MAO-enzyme inhibition, increasing monoamine
levels when 2C-B and dexamphetamine or methylphenidate
are combined.

Interaction data were obtained for older phenethyl-
amines. In healthy volunteers, no pharmacokinetic interac-
tions were found when combining MDMA and
methylphenidate, although increases in heart rate were
observed, with no blood pressure. In addition, higher plasma
epinephrine concentrations, and lower plasma norepinephrine
concentrations, were measured after exposure to the MDMA
and methylphenidate combination.91

Interactions Between 4-FA or 2C-B, and
Antiretroviral Medication

No reported clinical cases were found on the inter-
actions between antiretroviral medication and 2C-B or 4-FA.
Pharmacodynamically, only efavirenz has been shown to
inhibit SERT and DAT and is a partial 5-HT2a and 5-HT2c
agonist.81 Given that 2C-B is metabolized by MAO en-
zymes,45 it seems possible that its combination with efavirenz
could increase serotonin levels because serotonin turnover
could be blocked by 2C-B and efavirenz reuptake. 4-FA in-
hibits SERT, releases 5-HT, and could activate the 5-HT
receptors. Hence, theoretically, efavirenz with 2C-B or 4-
FA could increase the risk of developing the serotonin syn-
drome. However, no cases have been reported yet. For the
other antiretroviral medication, pharmacodynamic interac-
tions are not expected.

Theoretically, pharmacokinetic CYP–CYP interactions
between 2C-B and antiretroviral medication are not expected.
Conversely, interactions between antiretroviral medication
and 4-FA cannot be ruled out, given that 4-FA metabolism
is unknown. For older phenethylamines, drug–drug interac-
tions with antiretroviral medication have been reported.
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Evidence exists showing the effect of antiretroviral medica-
tion on the metabolism of amphetamine-type drugs using
CYP3A4, which can result in increased toxicity.92,93 One of
the best-documented drug–drug interaction concerns a fatal
case, involving an HIV-positive man who used ritonavir and
took 180-mg MDMA. The patient had used similar amounts
of MDMA without adverse effects before starting with rito-
navir. After using MDMA, the patient experienced tachycar-
dia, tachypnea, cyanosis, and sweating and died of
cardiorespiratory arrest. A postmortem toxicological analysis
showed that his blood MDMA concentrations were approxi-
mately 10-fold above the expected. It was concluded that
ritonavir-mediated CYP2D6 inhibition was the most likely
cause of this 10-fold increase.94

Two additional cases of interactions between MDMA
and antiretrovirals (including ritonavir) are known, both of
which were nonlethal.88 In one of the cases, a 23-year-old
patient was treated with 100-mg ritonavir, 300-mg atazanavir,
and 300-/200-mg tenofovir/emtricitabine and had ingested 2
tablets of MDMA. After dancing, he developed hyperthermia,
seizures, impairment of consciousness level, tachycardia,
severe rhabdomyolysis, and renal failure. He was hospitalized
for 3 weeks, spending 11 days in intensive care. The MDMA
concentration measured was much higher than expected,
causing the authors to conclude that the ritonavir–MDMA
combination-mediated increased MDMA accumulation and
inhibition of its metabolism, by interaction by CYP2D6.93

Given that atazanavir also inhibits CYP3A4, it may also have
contributed to MDMA increase. The other life-threatening
case concerned a patient who used ritonavir and saquinavir.
He was hospitalized after taking gamma hydroxybutyrate
(GHB) and MDMA. This patient had symptoms such as
tachycardia, hypertension, and hypothermia. No MDMA
was measured.95 NNRTIs, protease inhibitors, and integrase
inhibitors can induce drug–drug interactions with
amphetamine-type substances.96 Methamphetamine can also
inhibit protease inhibitor metabolism, using CYP3A4.97

DISCUSSION
In this review, indications of potential interactions

between 4-FA and 2C-B, and prescription medicines, were
found, although the evidence is predominantly indirect and
related to older phenethylamines such as amphetamine,
methamphetamine, and MDMA. Nonetheless, these findings
are relevant for vulnerable patient populations well-known for
the concurrent use of prescription medicine and recreational
drugs: psychiatric patients, adolescents with ADHD, and HIV
patients.

Interactions between NPS and prescription medication
could be relevant. Substance abuse in HIV patients is
a common problem and could have many consequences;
drugs of abuse could decrease the effectiveness or increase
the toxicity of antiretrovirals, through drug–drug interactions.
Conversely, antiretrovirals could also increase the toxicity of
drugs of abuse.98 Evidence points toward antiretrovirals
affecting the metabolism of amphetamine-type drugs through
CYP3A4, resulting in increased toxicity.92,93 Toxicity mainly
results from higher concentrations of amphetamine-type

drugs, through decreased CYP3A4-mediated metabolism.
Furthermore, methamphetamine is able to counteract the
metabolism of certain antiretrovirals, using CYP3A4.97 This
has been reported to negatively affect antiretroviral efficacy.99

Valid cases have been described on the use of MDMA/
antiretroviral combinations. A patient under regular MDMA
died after commencing ritonavir, probably due to ritonavir-
mediated CYP2D6 inhibition.94 Similarly, a fatal case was
reported to be associated with the concurrent use of protease
inhibitors and methamphetamine.100

2C-B is not metabolized by CYP enzymes.45 It is not
known if 4-FA can be metabolized through the same route as
other amphetamine-type drugs. The added fluorine atom on 4-
FA may promote the bypass of CYP450-mediated metabo-
lism, although this metabolism cannot be ruled out. It is pos-
sible that 4-FA is broken down into pharmacologically active
metabolites, as are other amphetamine-type drugs, CYP450
substrates,101 thereby rendering an alternative interaction
pathways with antiretrovirals. Further research is required,
on 4-FA metabolism.

Interaction studies on MDMA and antidepressants such
as citalopram show that antidepressants can reduce MDMA’s
subjective psychoactive and physiological effects, or some of
its cardiovascular effects. Although duloxetine increased
MDMA levels due to a pharmacokinetic interaction, it in-
hibited MDMA-induced cardiovascular and subjective ef-
fects.41,85 Theoretically, a combination of MDMA and
antidepressants can also lead to increased 5-HT levels.
Hence, a combination of 4-FA– and 5-HT–elevating thera-
peutic drugs should be avoided. Pharmacodynamically,
mechanism of action of 4-FA shows some similarity to that of
MDMA, although with a lower potency for SERT inhibition.5

2C-B also inhibits SERT and NET at higher concentrations,
in addition to binding to, and activating several 5-HT recep-
tors, and inhibiting MAO.5,6,40,51,52 One case report has
described serotonin syndrome after ingestion of 2C-I, a highly
analogous substance to 2C-B.102 Therefore, the combined use
of high doses of 2C-B with antidepressants could lead to 5-
HT toxicity or sympathomimetic effects. Combining MAO
inhibitors with 2C-B or 4-FA should be avoided because it
increases the risk for sympathomimetic effects and adrenergic
or serotonergic crisis, theoretically.

Phenethylamines could theoretically interact with
ADHD medications. Methylphenidate and dexamphetamine
increase DA and NE levels in the brain, by acting as NET and
DAT blockers, and actively releasing monoamines through
synaptic vesicles.68,103 4-FA also blocks DAT, NET, and
SERT, increasing the likelihood of interaction, based on phar-
macodynamics. 2C-B is metabolized by MAO s,45 which
breaks down monoamines. Moreover, 2C-B has inhibitory
effects on MAOs.51,52 Given that amphetamine inhibits
MAOs,71 an interaction between 2C-B and amphetamine is
possible, both on a pharmacokinetic (higher concentrations of
2C-B or amphetamine) and pharmacodynamic (higher mono-
amine levels) level. At higher 2C-B concentrations, interac-
tions at the NET would also be possible, with
methylphenidate and atomoxetine, possibly resulting in criti-
cal NE levels, and subsequent clinical reactions, such as
tachycardia and hypertension.
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It is important to exercise caution with NPS consump-
tion because either 4-FA or 2C-B will be detected in the
routine drug screening tests used in most hospitals. In
everyday practice, NPSs such as 4-FA and 2C-B are missed
by standard immunoassay analyses. Also, very little is known
about their (active) metabolite formation process in humans.
Therefore, NPS metabolomics are important for their detec-
tion in the clinic, and understanding drug–drug interac-
tions.104–106

To detect these substances in clinical cases, more
specialized laboratory equipment is required. Although more
extensive toxicological screening might not influence treat-
ment, which is predominantly symptomatic, it might establish
a more complete diagnosis, excluding other causes of the
clinical symptoms.

With regard to interactions, even less is known, but
interaction-induced intoxications are often more problematic
to treat, so hospital physicians and toxicologists would benefit
from more analytically confirmed exposure on coingestion of
more substances. Acquired knowledge on these interactions
can also be used to warn NPS users on the interactions with
therapeutic drugs.

In summary, the potential for drug–drug (NPS-
prescribed medications) interactions was found, both on the
pharmacokinetic and pharmacodynamic levels, mainly
involving MAOs for 2C-B and 4-FA, with monoamine trans-
porters being more specific to 4-FA. Pharmacokinetic inter-
actions through CYP450 enzymes remains speculative but
cannot be ruled out, given the evidence on interactions
between other phenethylamines and prescription medicines,
such as SSRIs and antiretrovirals.
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