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ABSTRACT
Affective disorders such as anxiety, phobia and depression are a leading cause of 

disabilities worldwide. Monoamine neuromodulators are used to treat most of them, 
with variable degrees of efficacy. Here, we review and interpret experimental findings 
about the relation of neuromodulation and emotional feelings, in pursuit of two goals: 
(a) to improve the conceptualisation of affective/emotional states, and (b) to develop a 
descriptive model of basic emotional feelings related to the actions of neuromodulators. In 
this model, we hypothesize that specific neuromodulators are effective for basic emotions. 
The model can be helpful for mental health professionals to better understand the affective 
dynamics of persons and the actions of neuromodulators ‑ and respective psychoactive 
drugs ‑ on this dynamics.
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Introduction

Scientists concerned with human health have not been able to reach 
a consensus about the aetiology and treatment of affective disorders, 
and whether they have different physiological markers (Bos et al., 2013[8]; 
Gruber et al., 2011[36]; Lipp et al., 2014[61]; Terry et al., 2013[100]). Looking for 
an advance in this field of research and therapy, we discuss the scientific 
approach to affective disorders and their putative brain correlates. First, we 
discuss conceptual issues and the usage of tools as the ‘conceptual space’ 
framework (Gardenfors, 2000[32]). Second, we discuss the physical-biological 
structure (transmitters, modulators, receptors) experimentally related to the 
phenomena. Third, we discuss the possibility of an integrative model of four 
basic emotional feelings and related neuromodulators involved in affective 
disorders.

A clarification between neurotransmission and neuromodulation would 
be in order before we proceed further. Regarding the neurobiological 
terminology used here, and how we understand it, transmission of sensory 
and endogenous information in the thalamo-cortical system is primarily 
dependent on Glutamate (Glu), an excitatory transmitter present in the whole 
brain, and is balanced by inhibitory transmitter gamma-aminobutyric acid 
(GABA). The use of Glu in psychiatry, for the treatment of schizophrenia, is 
very recent. Inhibitory psychoactive drugs, in contrast, are widely used for 
anxiety disorders.

On the one hand, we use the term neuromodulation to refer to endogenous 
macromolecules or exogenous psychoactive drugs that modulate the balance 
of Glu and GABA, defining general mood states of the person under study; 
in this sense, they could be called ‘mood-actors’. Neuromodulators have 
been the main players in biological psychiatry in the treatment of affective 
disorders. On the other hand, we do not use the term neuromodulator to refer 
to neuropeptides, which are brain hormones that produce very specific effects. 
Neuropeptides are also smaller macromolecules that in some cases can cross 
the brain-blood barrier.

Another issue we need to clarify is why use the term ‘emotional feelings’, 
which may appear like a tautology. As explained in more detail in the 
next section, our use of the term ‘feeling’ is more restricted than our use of 
‘emotion’. All feelings are emotions, but not all emotions are feelings. Feelings 
are considered to be the conscious, subjective aspect of emotions. In affective 
disorders, emotional feelings are the conscious subjective experiences of the 
suffering person. These conscious experiences are classified in categories such 
as anxiety and mood disorders, depending on the type of emotional feeling 
that is involved.
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Concepts of Affect and Emotion

In this section, we address conceptual issues fundamental to the scientific 
study of emotions. The term ‘emotion’ has been used in neuroscience to describe 
a wide range of phenomena. Emotions have been considered to have both 
conscious and unconscious aspects (Ledoux, 1996[55]). Looking for a more detailed 
account, Panksepp (Panksepp, 1998[77]), Damasio (Damasio, 1999[19]) and Pereira 
Jr (Pereira Jr., 2013[78]), among others, have made an analysis of the concept.

Panksepp (1998[77]) used the term ‘core affect’ to refer to basic states common 
to most vertebrate species, being triggered by the release of specific hormones 
or neuropeptides. In this view, basic sensations as hunger and satiation would 
be called ‘core affects’.

Damásio (1999[19]) distinguishes feelings from emotions. Emotions are 
psycho-physiological processes related to the state of the whole body by means 
of somatic markers. Feelings are mental states experienced from the first-person 
perspective, that is, experienced by a subject with a sense of self. Brain correlates 
of feeling partially overlap with, but are not identical to, brain correlates of 
emotion (Houde et al., 2001[42]). For instance, in the case of emotional processes 
as facial expressions, the motor system is involved in their generation, but 
probably not in the generation of the corresponding feeling (e.g., feeling sad, or 
happy, or surprised, or terrified). One reason for this distinction is that the same 
pyramidal neurons of the motor system are involved in several facial expressions, 
irrespective of the associated feeling.

Damásio (1999[19]) further states, based on his own research that both feelings 
and emotions can occur unconsciously. This claim is well-supported for emotions 
since this concept includes somatic and behavioural processes that escape 
conscious mentation or control, e.g., the increase of skin conductance and cortisol 
release. However, we cannot find in his publications evidence to support the claim 
for the existence of unconscious feelings. How could feelings be unconscious? It 
seems that if a feeling is not conscious, then it is not experienced at all.

Pereira Jr. (2013[78]) alternatively proposed that a major difference between 
emotions and feelings is ‘while the existence of feelings always implies some (even 
the slightest) degree of consciousness being instantiated, emotions - in the sense 
of somatic or motor activities - are not necessarily accompanied by conscious 
experiences’ (Pereira Jr., 2013[78]). There are many lines of evidence for the existence 
of unconscious emotions, as reviewed by LeDoux (1996[55]); for instance, subliminal 
perception triggering activity of the autonomous nervous system.

Emotion can be triggered by conscious feelings but can also exist without 
such feelings. In this regard, chills on the spine, facial expressions and actions 
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on an external material are components of emotional processes (e.g., the most 
pungent paintings of Edvard Munch, as ‘The Scream’, which is frequently used 
in psychiatry to illustrate the panic disorder; see http://www.en.wikipedia.
org/wiki/The_Scream).

Pereira Jr. (2013[78]) distinguishes two kinds of feeling: ‘a “sensitive feeling” 
refers to the experience of states of the body, e.g., feeling hunger and thirst, heat or 
cold, and pain or pleasure …an “affective feeling” refers to experiences elicited by 
the content of information, e.g., feeling happy or sad about something, interested 
in or bored of something, loving or hating something’ (Pereira Jr., 2013[78]). In 
this conceptualisation, sensitive feelings would correspond to Panksepp’s ‘core 
affects’, while affective feelings would be mostly those related to the interaction 
with the physical and social environment, which are often altered in affective 
disorders.

In this paper, we use the term ‘emotional feeling’ to refer to the conscious 
(sensitive and affective) feelings elicited by somatic emotional processes. We 
further assume that emotional feelings have whole-body correlates. In other 
words, their biological correlates are not restricted to the brain. We assume that 
the state of somatic systems, as the gut, heart and nervous system, participate 
in the determination of emotional feelings. Although the brain is surely the 
place of the body where signals from different parts are integrated composing 
conscious episodes, we observe that the brain does not work alone, but in 
collaboration with all other parts of the body. For instance, ingestion of a toxic 
substance activates serotonergic receptors in the gut system, causing pain. 
The feeling of pain is a product of the conjoint operation of the brain and gut 
systems. For this reason, in the below reasoning, we take into account also 
neuromodulators that act on somatic systems outside the brain.

In the above theoretical perspective, affective disorders can be conceived as 
disorders of the dynamics of emotional feelings, e.g., the abnormal dominance 
of melancholy in general depression, or of anxiety in obsessive-compulsive 
disorders. To improve our understanding of these disorders, it is necessary to 
conceptualise human emotional feelings, their normal and abnormal dynamic 
patterns.

The One-Gradient Space of Emotional Feelings

How to map the main kinds of emotional feeling typical to the human species, 
making possible the identification of each person’s affective dynamics, and then 
improving the diagnosis and therapy of affective disorders?

Panksepp (1998[77]) departs from the assumption that emotional feelings 
arise from neurobiological events that mediate instinctual action patterns; they 
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‘sustain some unconditioned behavioural tendencies, and play a key role in the 
unconscious constitution of new behaviours through providing mechanisms that 
allow organisms to categorize world events efficiently so as to control future 
behaviour . . . (they) are triggered by the arousal of various subcortical circuits, 
located in evolutionarily ancient areas of the mammalian brain’ (Almada, Pereira 
Jr. and Carrara-Augustenborg, 2013[1]).

Panksepp’s model for affective neuroscience is based on four ‘basic 
emotional systems’ (Panksepp, 1998[77]). The seeking-system is the neural 
network that provides us efficient ways to elaborate energetic and goal-
directed searching actions. ‘The rage-system is easily aroused by thwarting 
and frustrations, helping us to defend ourselves and prompting behaviour 
when we are irritated or restrained. The fear-system tries to minimize the 
probability of bodily destruction. This specific circuit arose during animal 
evolution and serves to reduce pain. Finally, separation distress panic is a 
neural system that is very important in the constitution and elaboration of 
social-emotional processes related to attachment’ (Almada, Pereira Jr and 
Carrara-Augustenborg, 2013[1]).

Based on the above categories, we sketched the one-gradient conceptual 
space of emotional feelings [Figure 1], where Panksepp’s basic emotions can be 
located in a single line (from Unsatisfying to Satisfying) according to their valence. 
This illustration does not allow, or intend to provide for, a precise location of 
emotional feelings in the conceptual space; for instance, it does not analyse the 
features of different satisfactory feelings, such as satiety, gladness and happiness.

In Panksepp’s work, the above emotional states are putatively generated 
mostly by means of the action of neuropeptides. These molecules carry very 

Figure 1: One-Gradient Conceptual Space of Emotional Feelings.
The affective dynamics of a human individual (and possibly other animal species) ranges from 
satisfying to unsatisfying states, for which there are several terms in natural language, such as 
“happiness”, “satiety”, “anxiety” and “anger” (Figure created by Alfredo Pereira Jr. from a textbook 
sketch made by Rocha, 1999)[86]
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specific actions [Table 1] while the combined actions of neuromodulators elicit 
general mood states.

In order to account for the dynamics of emotional feelings in the generation 
of affective disorders, we look for a framework featuring the actions of 
neuromodulators. The questions may be asked: Why is this needed? What is 
problematic about Panksepp’s approach?[77] How does our framework correct 
that? How are ‘neuromodulators’ different from ‘neuropeptides’?

The need of considering neuromodulation is evident in the psychiatric area, 
where drugs that modulate brain activity are largely used to treat affective 
disorders. In Panksepp’s approach, his conception about the generation of 
emotional feelings is restricted to instinctive processes. Their response is not 
co-determined by interaction with the physical and social environment. Each 
neuropeptide at the left side of the table always produces the corresponding 
emotional feeling listed on the right side. When taking neuromodulation 

Table 1: Neuropeptide modulation and affective/emotional contents: Discoveries 
from 1935 to 1985 (A historical note, without updates, aimed to show some of the 
factors that combine to produce emotional feelings. Table created by Alfredo Pereira 
Jr. using data from Panksepp, 1998)

Neuropeptide Emotional feelings
Substance P Pain and anger
Angiotensin Thirst
Oxytocin Orgasm, maternal feelings
ACTH Stress
Insulin Energy
Vasopressin Male sexual arousal, dominance
Bradykinin Pain
CCK Satiety, panic
Prolactin Maternal and social feelings
TRH Playfulness
LH-RH Female sexual arousal
Bombesin Satiety
Neurotensin Seeking
Enkephalin Pain, pleasure
Endorphin Pain, pleasure
DSIP Sleepiness
Dynorphin Hunger
CRF Panic, anxiety
NPY Hunger
ACTH: Adrenocorticotropic hormone, CCK: Cholecystokinin, TRH: Thyrotropin-releasing 
hormone, LH-RH: Luteinizing hormone-releasing hormone, DSIP: Delta-sleep inducing peptide, 
CRF: Corticotropin-releasing factor, NPY: Neuropeptide Y
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into consideration, we can account for plastic responses of the system to 
dynamic changes in the environment. Neuromodulators are not as specific as 
neuropeptides, and — more important — they seem to operate in synergy, as we 
propose in this paper. In the psychiatric clinic, the medical professional needs 
to think of different possible combinations of neuromodulation drugs, in search 
of the best option of treatment for the suffering person in her environment. For 
instance, it is well-known that inappropriate combination of drugs may induce 
a person recovering from major depression to commit suicide.

There is a complex temporal dynamics of psychological processes that 
correlates well with the underlying neuromodulation processes and cannot 
be addressed by consideration of instinctive responses alone. The functional 
difference between instinctive and plastic responses corresponds to structural 
differences between neuropeptides and neuromodulators. The former are smaller 
molecules that bind to sites of smaller receptors that have fixed functions, while 
the latter are more complex macromolecules that bind with more complex 
receptors, capable of acquiring a larger number of different configurations and 
carrying more flexible functions.

Both approaches, based on neuropeptides and neuromodulators, are possibly 
complementary and should be combined. However, a broader synthesis cannot 
be accomplished here; we look forward to completing it in another theoretical 
work. Using the Gardenfors (2000[32]) conceptual space tool, we can envisage a 
complex state space of emotional feelings, containing a first level composed of 
two dimensions that correspond to the one-gradient structure depicted in Figure 
1. Parallel to this plane, a second level of organisation can be plotted, containing 
the domain of neuromodulation that we discuss and model below. After both 
levels are constructed, their connections can be traced; for instance, happiness 
would be closer to satisfying and sadness to unsatisfying, although they are 
not identical. There are many plastic ways to find satisfaction. Happiness is 
one of the most efficacious, but not the only one; in some contexts — as, e.g., 
mourning — people may feel satisfied to be sad.

Neuromodulators and Emotional Feelings

Studies of the neural basis of emotional feelings have a long history within 
neuroscience and remain an active field of experimental and theoretical 
research. The identification of the limbic system as central to emotional 
processing helped to find important structures involved in primary emotions. 
With the development of drugs for affective disorders, monoamines were 
identified as factors influencing emotional processing (Cohen and Sclar, 
2012[16]; Fakra et al., 2010[29]; Schildkraut and Kety, 1967[95]; Timotijevic et al., 
2012[101]), but there is no general agreement on their proposed effects. For 
example, antidepressant drugs affect almost all these neuromodulators and are 
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used for almost all affective disorders such as anxiety, phobia and depression 
among others.

In this section, we briefly review differences between monoamines 
(Dopamine [DA], Serotonin: 5-hydroxytryptamine [5-HT] and norepinephrine 
[NE]), as well as acetylcholine (ACH), and propose that they underlie four basic 
emotional feelings: DA: Pleasure, 5-HT: Displeasure, NE: Fear/anger, and ACH: 
Relaxation/calmness.

Dopamine: Pleasure

Dopamine has been related to brain rewarding processes since 1980, when 
the hedonic hypothesis was formulated (Bozarth et al., 1980[9]; Bozarth and Wise, 
1980[10]). DA is a rewarding signal for salient stimuli such as food, sex and other 
needs. The reward depends on the needs of subjects, which were independently 
classified by Maslow (Maslow, 1943[63]).

Many pharmacological and behavioural studies on intracranial self-
stimulation established the important role of medial prefrontal rewarding DA 
systems in positively motivated behaviour (Mora and Ferrer, 1986[70]). Drug 
addiction reshapes the reward system by affecting DA release and reuptake; 
decreased striatum DA responses were reported in detoxified cocaine abusers 
(Volkow et al., 1997[103]). Individuals with a history of abuse of alcohol, cocaine, 
heroin, or methamphetamine display lower levels of DA receptor binding 
compared to non-abusers (Volkow et al., 1997[104]; Diana, 2011[24]; Ron and Jurd, 
2005[87]).

Over the past decades, theories concerning the role of midbrain DA on 
behaviour have changed. Although there is no doubt that DA is involved in 
hedonic experiences, its effects can be divided into more detailed aspects of 
behaviour (Redgrave et al., 1999[85]; Willuhn et al., 2010[106]). For example, global 
DA depletion does not impair the hedonic response to a primary reward such 
as preference for sucrose over water. These observations have led to considering 
the contribution of DA to motivated behaviour towards desired goals.

Mesolimbic DA is also involved in aversively motivated behaviours. Medial 
hypothalamic stimulation, which has been considered to cause a primary aversive 
state, causes a significant decrease in extracellular DA (Rada, Mark, and Hoebel, 
1998[83]). However, when rats press a lever to escape the stimulation, DA levels 
in the nucleus accumbens (NAc) increased instead. This is similar to a finding by 
(Cabib and Puglisi-Allegra, 1994[11]) that when animals were allowed to control 
a painful shock experience, NAc DA metabolites increased.

Schultz et al. (1997[96]) studied the role of DA for reward and prediction 
in conditioning experiments, proposing that DA is a signal of salience of the 
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stimulus; for example, DA neurons are activated when animals touch a small 
morsel of apple or receive a small quantity of fruit juice as reward. These phased 
activations do not discriminate between different types of rewarding stimuli, 
but aversive stimuli like air puffs to the hand or drops of saline to the mouth do 
not cause the same transient activations.

The unconditioned reaction can be connected to other stimuli.[13] For example, 
if the presentation of light is consistently followed by food, a rat will learn that 
light predicts the future arrival of food. Only the light with food will induce 
DA release. The prediction-based explanation is that the light fully predicts the 
food that arrives. Surprisingly, once the stimulus-reward association is learned, 
reward delivery no longer elicits an increase in the activity of DA neurons, as 
expected (Schultz et al., 1997[96]). It appears therefore that learning is driven by 
deviations or ‘errors’ between the predicted time and amount of rewards. Hence, 
the authors proposed that DA encodes expectations about external stimuli or 
reward, especially when it is uncertain or deviation or error (predication error).

From the above experimental evidence, we hypothesize that DA is a signal for 
salient stimuli such as food, sex and other needs, participating in the generation 
of the feeling of pleasure.

Serotonin (5-hydroxytryptamine): Displeasure

5-hydroxytryptamine has been related to depression for decades, mostly 
because of being targeted by antidepressant drugs; however, most prescribed 
drugs for depression do alter 5-HT levels. 5-HT is mostly released in the gut 
(about 90% of body release), where enterochromaffin cells release it in response 
to noxious substances in the food, making the gut move faster, thus causing 
vomiting or diarrhoea. Plant seeds with 5-HT exploit this reaction to speed the 
passage of seeds through the digestive tract. Animals such as wasps and scorpion 
can induce pain by means of 5-HT and other substances present in their venom.

Even in phylogenetically distant animals like the mollusc, 5-HT release is 
involved in the regulation of avoidance behaviour (Inoue et al., 2004[44]). Drugs 
that block 5-HT receptors make the body unable to shut off appetite and are 
associated with increased weight gain (Wheeler et al., 1996[105]). People with low 
5-HT are at risk of showing aggressive behaviour, not caring about punishments 
(LeMarquand et al., 1998[57]).

It was found that depressed subjects with low cerebrospinal fluid (CSF) 
concentrations of a 5-HT metabolite were found to display a history of suicide 
attempts (Roy et al., 1990[88]); Engstrom et al., 1999[28]; Jokinen et al., 2007[53]; 
Lidberg et al., 1985[59]; Moberg et al., 2011[68]). The correlation between low CSF 
5-hydroxyindoleacetic acid (5-HIAA) concentrations and increased risk for 
suicide has become one of the most reproducible findings in biological psychiatry 
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(Engstrom et al., 1999[28]; Jokinen et al., 2007[53]; Lidberg et al., 1985[59]; Moberg 
et al., 2011[68]).

Some other studies have suggested that the deficits in 5-HT functioning 
within the frontal cortex may underlie other behaviour disturbances, such as 
impaired impulse control and increased incidence of violent episodes (Higley 
et al., 1996[39]; Miller, 1992[67], Holmes et al., 2002[41]; Siegel et al., 2007[98]).

Some studies even suggested that low 5-HIAA in the CSF is a marker for the 
predisposition to a wide array of psychopathological problems such as impulse 
control, suicide, impulsive fire setting, violent criminal behaviour, alcohol 
intake and dependence (Plutchik, 1962[82], Virkkunen et al., 1987[102]; Carlborg 
et al., 2009[14]).

In the central nervous system (CNS), 5-HT is mostly produced by neurons 
in the raphe nuclei and released into the extracellular space between neurons in 
medial prefrontal cortex, amygdala and hippocampus. It is involved in appetite, 
sleep and mood (Pakalnis et al., 2009[75]). Opinion on these functions has been 
revised in the past few years. One of the main arguments related to insomnia was 
based on the destruction of the midbrain raphe nuclei in the cat (Saponjic, 2011[91]); 
but it is currently accepted that 5-HT predominantly promotes wakefulness and 
inhibits rapid eye movement (REM) sleep (Monti, 2011[69]), because the activity of 
serotonergic neurons of the dorsal raphe nuclei decreases from waking through 
slow wave sleep to REM sleep. Only under some circumstances does it contribute 
to increase in sleep propensity (Monti, 2011[69]).

5-hydroxytryptamine may indirectly act as a tranquilliser. Tryptophan, 
which is easily converted to 5-HT in the body, is used as a tranquilliser; and it 
has been proved that 5-HT is involved in the biology of torpor and hibernation, 
and inhibits mitochondrial respiration. Abundant evidence points to a decrease 
of 5-HTergic activity in anxiety, phobias, panic attacks, post-traumatic stress, 
and depression disorders based on effects of treatments that enhance 5-HT. The 
most popular kind of antidepressant increases the action of 5-HT in the brain; 
however, it has been difficult to establish a primary role for 5-HT deficiency in 
the above diseases (Fernandez and Gaspar, 2012[30]).

Selective 5-HT reuptake inhibitors may also have depression-like side effects, 
such as apathy, nausea/vomiting, drowsiness, weight loss and diminished libido. 
Actually, these drugs also affect other modulators (DA, NE); for example, in 
the first generation of antidepressants, the monoamine oxidase inhibitors had a 
similar effect on all catecholamines. Pharmaceutical companies have been looking 
for 5-HT-specific reuptake inhibitors. However, while it is true that these drugs 
increase the actions of 5-HT, it is hard to find their effects on depression. These 
drugs’ improvement of depressive symptoms, sometimes better than placebo, 
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might be the result of increased social interaction subsequent to a reduction in fear 
and avoidance (Dempsey et al., 2009[22]). Injecting 5-HT or increasing its activity 
can cause sedation and helplessness.[48] Learned helplessness, a behavioural 
depression caused by exposure to inescapable stress, is considered to be an 
animal model of human depressive disorder. Cortical 5-HT excess is causally 
related to the development of learned helplessness (Petty et al., 1994[80]), and 
learned helplessness patients have high levels of 5-HT (Kobayashi et al., 2008[54]; 
Petty, Kramer and Moeller, 1994[79]; Petty et al., 1994[80]).

Chemicals that antagonize 5-HT do seem to function as antidepressants 
(Martin, Gozlan and Puech, 1992[62]). It has been found that l-tryptophan depresses 
while levodopa intensifies emotional reactivity, the former lowering the level 
of endogenous 5-HT. And it was also found that lack of 5-HT enhances the 
emotional reactivity to learned fear memories (Dai et al., 2008[18]). The major 
benefit of 5-HT drugs seems to be alleviating anxiety.

Genetic studies also support this viewpoint. Pet1 is specifically expressed 
in the 5-HT neurons and directly activates the transcription of genes implicated 
in the serotonergic machinery.[73] Compared to WT and Pet +/− littermates, 
Pet −/−mice have an 80% reduction in 5-HT tissue levels, with no significant 
changes in the levels of DA (Hendricks et al., 2003[38]). These mice showed normal 
ambulatory activity in a novel arena; however, they explored more the aversive 
areas, which suggests lacking of a dislike marker due to low 5-HT. In addition, 
these mice showed increased levels of aggression as measured by the resident-
intruder assay (Hendricks et al., 2003[38]).

The hydroxylation of tryptophan into 5-hydroxy-tryptophan is the rate-
limiting step in the synthesis of 5-HT. Two isoforms of the enzyme tryptophan 
hydroxylase, Tph1 and Tph2, are responsible for catalysing this reaction. Tph2 is 
exclusively expressed in the 5-HT neurons of the raphe nuclei. Genetic deletion 
of Thp2 was obtained in several groups. The depressive-like behaviour of 
the Thp2 −/− mice was evaluated (Savelieva et al., 2008[94]), which finds that 
these mice spent less time immobile in the test, a result that is suggestive of an 
antidepressant effect.

Another example is the vesicular monoamine transporter (Vmat) 2, which 
transports monoamines into the synaptic vesicle. The homozygote Vmat2 −/− 
induced a major depletion of all monoamines and died within a few days after 
birth (Zhang et al., 2005[107]). In contrast, heterozygote Vmat2 +/− mice, having 
a 34% decrease in brain 5-HT, were viable and showed normal growth rate 
and behaviour. These animals also showed a significant reduction in the level 
of DA 42% and NE, 23%. Interestingly, they showed pronounced depressive-
like phenotype characterised by increased immobility (Fukui et al., 2007[31]). 
In contrast, no anxiety phenotype was detected in a large battery of tests. To 
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overcome the lack of specificity, a conditional knockout mouse was created by 
crossing Sert mice with Cmat2, allowing for the deletion of the Vmat2 gene 
specifically in 5-HT neurons (Narboux-Neme et al., 2011[72]). No depression-like 
phenotype was observed; instead they showed less latency to reach out for the 
food pellet in a novelty suppressed feeding test, suggesting an anxiolytic-like 
phenotype.

Overall, both pharmacological and genetic studies reviewed above suggest 
that 5-HT action is related to generation of the feeling of displeasure.

Norepinephrine: Fear/anger

An event is anticipated (expected) or not anticipated (surprising). If what 
happens was anticipated, people feel calm; if it happens surprisingly, the first 
reaction is to be scared and angry. For example, the door was knocked very 
loudly while you were focusing on your reading; the first reaction is that you 
become scared, and then angry. After opening the door, you may feel happy 
(if the person knocking the door is someone you like) or sad (if the person is not 
liked). The neuromodulator underlying both fear and anger is NE.

In the peripheral autonomous nervous system, NE acts as a sympathetic 
neurotransmitter. Together with hypothalamic-pituitary-adrenal hormones, NE 
induces the stress that underlies ‘fight-or-flight’ responses, directly increasing 
heart rate, triggering the release of glucose, and increasing blood flow to skeletal 
muscles. In the CNS, the NE system is considered to play an important role in 
attention, sleep/wakefulness, emotion and central responses to stress. It might 
also be involved in anxiety disorders, especially in panic/fear disorders (Itoi 
and Sugimoto, 2010[46]).

Norepinephrine release induces fight/anger or flight/fear, which are early 
evolutionary adaptations to allow better coping with dangerous and unexpected 
situations. When a deer meets a lion, NE is released in both brains, but the reaction 
of the deer is flight/fear while the reaction of a lion is fight/anger. These are 
twin emotions supported by NE release.

Norepinephrine is released from the locus coeruleus (LC) in the case of 
stressful events to keep the brain alert to the unexpected stimuli and inhibit 
irrelevant stimuli, a function that has been described as increasing ‘signal to 
noise’ rate in the afferents[23] (Morilak et al., 2005[71]; Avery et al., 2012[5]; George 
et al., 2013[33]).

The LC is the largest NE nucleus in the brain, projecting axons to almost 
all brain regions. Many studies have been conducted to show its implication 
in sleep, attention and alertness, anxiety and stress response (Bremner et al., 
1996a[11], 1996b[12]; Itoi, 2008[45]). Robust activation of the LC has been reported 
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after stressful stimuli in cats: an increase in firing was observed following 
exposure to noxious air puff stimuli or visual threat (Rasmussen, Morilak, and 
Jacobs, 1986[84]). Electrical stimulation of LC resulted in behaviours observed in 
fearful or threatening situations in the wild (Levine, Litto, and Jacobs, 1990[58]; 
Sara and Bouret, 2012[92]).

It has been recognised that the amygdala plays a prominent role in 
stress-elicited fear and anxiety (LeDoux, 1998[56]). Electrical stimulation of the 
amygdala promotes stress-like behavioural and autonomous reactions, whereas 
ablation shows a marked increase of tameness, loss of motivation, decrease of 
fear response to aversive stimuli and a more rapid extinction of conditioned 
avoidance responses acquired preoperatively (Shumake et al., 2010[97]). NE and 
DA may be released together to induce anger and aggressive behaviours. The 
interaction between NE and 5-HT is less documented. Serotonergic neurons in 
the raphe nuclei project to fear-related amygdala areas (Graeff et al., 1993[35]; 
Asan, Steinke, and Lesch, 2013[3]).

A considerable amount of research has focused on the finding of low 5-HT 
metabolite levels in abnormal aggression, but the mechanism is not clear. We 
can conjecture that at low levels of 5-HT people are likely to feel more anger 
when surprised, inducing impulsive behaviours, violent or aggressive. Loud 
noise increases midbrain tryptophan hydroxylase activity (Boadle-Biber et al., 
1989[7]; Azmitia, Liao, and Chen, 1993[6]), but is blocked by a lesion of the central 
amygdala (Singh et al.,1990[99]; Armbruster et al., 2010[2]).

Within the circuits of fear, it has been proposed that central serotonergic 
activity plays a crucial role by enhancing fear through the raphe nuclei-amygdala 
pathway (Graeff et al., 1993[35]; Ling et al., 2009[60]; Goel et al., 2014[34]). Serotonergic 
cells in raphe nuclei firing activity rises with restraint and confrontation (Jacobs, 
1991[49]; Jacobs and Fornal, 1991[50]; Ling et al., 2009[60]; Goel et al., 2014), and 5-HT 
levels rise during inescapable shock treatment but not during escapable shocks 
(Maswood et al., 1998[64]), when DA is released. Considering these dynamical 
aspects of emotion, there is uncertainty regarding whether a stimulus will 
predict threat or reward.

In summary, NE release has been experimentally related to ‘fight or flight’ 
behaviours, inducing the emotional feelings of fear and anger.

Acetylcholine: Calmness/willingness

Although there are few reports about cholinergic involvement in emotional 
feelings, ACH is a major player in the affective space since it sets the pace for 
cognitive operations that stabilize affective drives. In the peripheral nervous 
system, ACH acts as a parasympathetic neurotransmitter, being responsible 
for stimulation of ‘rest and digest’ activities that occur when the body is at rest, 
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including sexual arousal, salivation, tears, urination, digestion and defecation. 
In the CNS, ACH can boost cognitive functions; its uptake inhibitors have been 
used for Alzheimer’s disease. It might, therefore, be conceived as the cognitive 
part of emotion, regulating the expectation of rewards (Delgado, Gillis, and 
Phelps, 2008[21]).

The opposite emotional feelings for fear/anger are calmness/willingness, or 
‘cholinergic emotions’. Darwin used related words in his book about emotions 
(Ekman, 2003[27]). He found that even bees get angry and described angry dogs 
as retracting upper lips, exposing teeth for biting. In a similar fashion, dogs stand 
erect, hairs on its back upright to appear large, thus appearing threatening. On the 
contrary, the dog gets down close to the ground to show affection or submission. 
Hence, the opposite emotional feeling for anger would be ‘affectionate’, and the 
opposite emotion for fear might be ‘courage’. ACH underlies these emotions 
by inhibiting the excitability of the cortex (Eggermann and Feldmeyer, 2009[26]; 
Gulledge et al., 2007[37]). The significant of ACH-related emotional feelings lies in 
that they can help people relax from stressful events. For example, ACH-related 
emotions help psychological therapy with phobic, manic and anxious patients. 
In addition, nostalgic music (not sad music) can make people calm down. 
Furthermore, long-term stressful events usually lead to back pain, because of 
long time back stance.

This is not to say that ACH-related emotions are all positive: Apprehension 
and worrying should also belong to this group. Actually, cholinergic involvement 
in depression has long been suggested, since 1972 (Janowsky et al., 1972[50]). At 
the time when the hypothesis was first published, the primary evidence was 
that a number of cholinesterase inhibitors had been shown to induce depression 
(Janowsky, 2011[52]), presumably by increasing central ACH levels (Janowsky, 
el-Yousef, and Davis, 1974[51]). For example, physostigmine, a centrally acting 
cholinesterase inhibitor, was shown to decrease manic symptoms and increase 
depressed reaction. Later on, many studies provided information that largely 
supported the hypothesis (Houlihan et al., 2002[43]; Janowsky, 2011[52]; Mearns, 
Dunn, and Lees-Haley, 1994[66]). The theory was further supported by animal 
studies showing that mice bred specifically for sensitivity to cholinergic agents 
demonstrated depression-like behaviours (Overstreet, 1993).

Other studies found that learned stress, a widely used preclinical model of 
depression, could be induced (Dilsaver and Alessi, 1987[25]). In addition, the mood 
depressing effects of monoamine reserpine, which has been used to support the 
monoamine hypothesis of depression, are remarkably similar to those of the 
cholinesterase inhibitors. Overlapping symptoms include apathy, lassitude, 
slowed down thinking, psychomotor retardation, lack of interest, fatigue, 
lethargy, nightmares and depression. In addition, reserpine has been reported 
to have central cholinergic properties. The reserpine-induced effect might be due 
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to a combination of monoamine depletion and cholinergic activation, shifting 
NE-ACH balance to a cholinergic dominance (Curro Dossi, Pare, and Steriade, 
1991[17]).

There are many reports about the interaction between ACH and 
catecholamines. For example, the antagonistic effects of NE and ACH in affective 
disorders were reflected in their synaptic wiring in the amygdala (McGaugh 
and Cahill, 1997[65]): ACH carries the influence of the amygdala to other brain 
structures; NE inhibits the activity of ACH (Packard, Cahill, and McGaugh, 
1994[74]). Through these synaptic wires, the amygdala filters its incoming sensory 
streams of information, looking for ‘dangerous’ stimulus features, which would 
require the organism to engage in certain species-specific instincts, such as freezing 
or starting (Samson, Frank, and Fellous, 2010[90]). Similar synaptic wiring can be 
found in the substantia nigra, where the interaction between DA and ACH is 
well-documented for cases of Parkinson’s disease. The inhibition of ACH on DA is 
also involved in the predication error experiments. As we know, ACH is involved 
in conditioned learning: after learning, a stimulus (e.g., light) will not induce DA 
release because ACH dominates and inhibits DA release. Similarly, DA released 
during feeding signals food reward, and the increase of ACH in NAc has a role 
in the onset of satiation (Avena et al., 2006[4]). This increase in ACH is attenuated 
with sham feeding, where food is drained from a gastric fistula after ingestion. 
Thus, food-induced DA release goes unopposed by ACH. Hoebel and colleagues 
(Hoebel, Avena, and Rada, 2007[40]) suggested that the DA and ACH balance in 
NAc may affect motivation: While DA enables a person to start moving, ACH 
acts as a control to prevent over-responding and facilitates stopping.

An interaction between ACH and 5-HT has also been reported. The selective 
5-HT reuptake inhibitor fluoxetine has demonstrated the ability to alleviate 
behavioural depression in the forced swim test, one of the potential mechanisms 
being to suppress cholinergic activities in the NAc (Chau et al., 2011[15]). 
Tobacco smoking also supports the relationship between ACH and depression. 
Depression rates are much higher in smokers with a history of major depression; 
they have a harder time quitting smoking and are at risk of developing a major 
depression episode. Smokers also have lower levels of monoamine oxidase A 
(Dani and Harris, 2005[20]). Many patients with depression fail to derive sufficient 
benefit from available treatment options and up to a third never reach remission, 
despite multiple trials of appropriate treatment. ACH uptake inhibitors might 
be an alternative drug for aggression, phobia or mania. Novel antidepressant 
drugs targeting ACH receptors appear to hold promise (Philip et al., 2010[81]).

The brain circuits of neuromodulation are displayed in Figure 2. NA is 
released in the brain stem and spreads first to anterior regions and cerebellum, 
and second to posterior cortical areas. ACH is released from the basal and medial 
nuclei and spreads in all directions. DA is released from the substantia nigra, 
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reaching the amygdala, nucleus acumbens and striatum. 5-HT is released from 
the raphe and takes a pathway similar to NA, spreading to anterior areas and 
cerebellum, and then to posterior cortex

Functional Neuromodulation in Emotional Dynamics

The earliest dimensional study of emotion was done by Wundt in 1897, 
identifying three dimensions of emotion: pleasant-unpleasant, tension-
relaxation and excitation-calm. Russell (2003[89]) proposed two dimensions for 
emotions: hedonic (pleasure-displeasure) and arousal (rest-activated). Ekman 
(2003[27] devised a list of six basic emotions: anger, disgust, fear, happiness, 
sadness and surprise (Sauter et al., 2010[93]). Plutchik (1962[82]), followed by 
Palumbo and Jellema (2013[76]) proposed eight primary emotions: anger, fear, 
sadness, disgust, surprise, anticipation, trust and joy, and arranged them in a 
colour wheel.

We argue that these six or eight emotions can be better understood in an 
integrated model that accounts for their oppositions and complementarities. Even 
though there are many standards, the most important is that primary emotional 
feelings should exclude each other. A second rule is that they should be able to 
compose all complex emotions, as in the case of the colour space, where three 
primary colours combine to generate all the others.

In a recent study on human facial expressions (Jack, Caldara and Schyns, 
2012[47]), the authors make a claim for the existence of four basic emotional 
feelings: happy, sad, fear/surprise (i.e., fast-approaching danger) and disgust/

Figure 2: Brain circuits of neuromodulation (Figure adapted by Alfredo Pereira Jr: from a public 
Internet site: http://www.karlabermeo.blogspot.com.br/2011/04/neurotransmisores.html)



MSM : www.msmonographs.org

21Fushun Wang and Alfredo Pereira Jr., (2016), Neuromodulation and Emotion

anger. This result is convergent with our previous reasoning on specific effects 
of neuromodulation on basic emotional feelings.

To illustrate the dynamics of four basic emotional feelings, we elaborate 
on an analogy with colours. There are only three primary different colours 
corresponding to the kinds of cone cells in the eye. The emotional feeling 
conceptual space is possibly more complex than the well-known colour space, 
containing at least four generating factors that modulate emotional feelings 
towards a complexity of affective states. Neuromodulation moves somatic 
systems towards four attractors in the landscape: pleasure, displeasure, fear/
anger and calmness/willingness.

This landscape contains two gradients: Pleasure-displeasure and surprise-
anticipation; therefore, we represent the conceptual space of neuromodulation 
of emotional feelings by means of a quadrant [Figure 3].

We suggest that the dynamics of emotional feelings is partially driven by 
neuromodulation: DA is a pleasure promoter, 5-HT is a displeasure promoter, 
NE is a fear/anger promoter and ACH is a calmness/willingness promoter. The 
quadrant offers a two-gradient view of the conceptual space of basic emotional 
feelings.

The dynamics of emotional feelings in everyday life can be seen represented 
in the diagram. If life is normally calm, everything is as expected; if something 
happens, people first feel scared and then blame things after fear is gone; quickly 
people will feel happy or sad depending on whether what happened fits their 
needs. Finally, things pass away, and people feel calm, happy, or missing and 
wanting for what was lost. We claim that the opponent and complementary 

Figure 3: The quadrant of neuromodulation of emotional feelings. (Figure created by Fushun Wang)
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relations depicted in the diagram can express the basic emotional dynamics 
involved in affective disorders. These can be understood as imbalances 
in the quadrant dynamics caused by hyper or hypo-action of one or more 
neuromodulators, combined with other psychosocial factors not addressed - for 
methodological reasons - in the current stage of our modelling.

Concluding Remarks [Figure 4: Flowchart of Paper]

Human affective dynamics is a very complex process involving the 
action of several brain electrochemical agents and psychosocial factors. In 
this paper, we make an approach towards a simplified model related to the 
action of four neuromodulators and respective psychoactive drugs used in 
psychiatry to treat affective disorders. We begin by making some conceptual 
definitions and assumptions: affective disorders are disorders in the dynamics 
of emotional feelings, which are conscious phenomena driven by the action of 
neuromodulation.

Neuromodulation is conceived as a regulatory processes acting on the 
balance of excitation and inhibition in the whole brain. This balance is primarily 
generated by the combination of Glu and GABA release and action. Furthermore, 
neuropeptides contribute to generate feeling sensations such as hunger, thirst and 
satiation, but these sensations are specific, while the action of neuromodulators 
is more general, producing global mood states in the brain and soma.

Figure 4: Flowchart of paper
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In a second step, we briefly review the contribution of each of four 
neuromodulators for the determination of affective states, and how their 
imbalance is related to most common affective disorders. In the third step, we 
represent them in a functional quadrant, where all possible combinations can 
be plotted.

A better understanding of human affective dynamics requires more effort, 
building on both the one-gradient and the two-gradient sketches presented here, 
as well as in psychosocial approaches. In spite of the limitations of our study, 
we hope it could be useful for the mental health professional looking for an 
integrated view of the action of neuromodulators and respective psychoactive 
drugs used in biological psychiatry.

Take Home Message

Although affective dynamics of human individuals is very complex and 
difficult, both conceptually and empirically (in experimental and therapeutic 
domains), today it is possible to find in the specialised literature sufficient 
information to build simplified models that can help understand the universe 
of emotional feelings and how brain endogenous chemicals and exogenous 
psychoactive drugs affect them.
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Questions that this Paper Raises

1. What is the relation between emotion, feeling and affective disorders?

2. How many basic emotional feelings do human beings have?

3. What is the relation between different kinds of neuromodulation and different 
kinds of emotional feelings?

4. How does the combination of different kinds of neuromodulation and/or 
corresponding psychoactive drugs used in psychiatry determine human 
mood states?

5. How do neuromodulators interact with neurotransmitters and brain 
hormones (neuropeptides)?
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