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Abstract: Millions of people around the world drink alcoholic beverages to cope with the stress of
modern lifestyle. Although moderate alcohol drinking may have some relaxing and euphoric effects,
uncontrolled drinking exacerbates the problems associated with alcohol abuse that are exploding
in quantity and intensity in the United States and around the world. Recently, mixing of alcohol
with other drugs of abuse (such as opioids, cocaine, methamphetamine, nicotine, cannabis, and
γ-hydroxybutyric acid) and medications has become an emerging trend, exacerbating the public
health concerns. Mixing of alcohol with other drugs may additively or synergistically augment the
seriousness of the adverse effects such as the withdrawal symptoms, cardiovascular disorders, liver
damage, reproductive abnormalities, and behavioral abnormalities. Despite the seriousness of the
situation, possible mechanisms underlying the interactions is not yet understood. This has been one
of the key hindrances in developing effective treatments. Therefore, the aim of this article is to review
the consequences of alcohol’s interaction with other drugs and decipher the underlying mechanisms.

Keywords: alcohol; addiction; withdrawal; cocaine; methamphetamine (METH); nicotine; marijuana;
opioids; γ-aminobutyric acid (GABA)

1. Introduction

Ethanol (referred as alcohol hereafter) and other illicit drugs-of-abuse (referred as drug(s) hereafter)
such as cocaine, methamphetamine (METH), nicotine, opioids, cannabis, and γ-hydroxybutyric acid
(GHBA) continue to be a major public health concern globally. In 2015, the estimated global prevalence
among the adult population was 18.4% for daily heavy alcohol use, 15.2% for daily tobacco smoking, 3.8%
for cannabis, 0.77% for amphetamine/methamphetamine (METH) use, 0.37% for opioid use, and 0.35%
for cocaine use [1]. Europe had the highest prevalence of heavy episodic alcohol use and daily tobacco
use. Approximately 6.6% (16 million) of Americans aged 12 or older reported heavy drinking, 22.7%
(55 million) reported binge drinking, and 8.1% (19.7 million) reported using drugs within the month
prior to the survey [2]. However, drug abusers have historically tended to use more than one drug,
a condition known as poly-drug abuse (defined as the concurrent or sequential abuse of more than one
drug or type of drug, with dependence upon at least one [3]). Over the past several years, there has been
an increasing tendency to combine narcotics, alcohol, sedatives, and/or stimulants [4,5].

Higgins et al. [6] have suggested that a combination of alcohol and other drugs of abuse such
as cocaine, nicotine, opioids, or cannabis is popular among drug users, perhaps because of more
intense feelings of ‘high’ beyond that perceived with either drug alone or less intense feelings of
alcohol’s aversive effects. Their survey of the cocaine-dependent patients showed that more than half
of the subjects met criteria for current alcohol dependence, and in more than 50% of the occasions
both drugs had been used simultaneously. In forensic studies of Budd et al. [7] and Marzuk et al. [8],
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cocaine and ethanol were frequently identified in biological samples from fatally injured drivers.
Dani and Harris [9] showed that almost 20 million cigarette-smoking Americans, either abuse or
were addicted to alcohol. According to Patrick et al. [10], 94% of adults between the ages of 18 and
30 years have used alcohol in their lifetimes, and 56% have also used marijuana. In general, alcohol is
commonly co-abused with (i) psycho-stimulants such as METH, cocaine or nicotine, (ii) opioids such
as morphine, fentanyl and heroin, (iii) cannabis that is now legal in many states of the United States,
and (iv) a potent neuro-inhibitor γ-hydroxybutyric acid (GHBA) [11–13]. The adverse effects of mixing
alcohol with other drugs can be dramatically severe [14,15] that may hinder decision making, thinking,
and neurocognitive capabilities [16–20].

Although mechanisms underlying the alcohol-drug interaction are not fully understood,
two possibilities have been proposed: (i) common mechanisms including pharmacokinetics and
pharmacodynamics [21,22] (Section 2) and (ii) specific mechanisms related to individual drug
(Section 3). Earlier studies [23] have shown that alcohol increased the risk of heroin-related deaths, not
due to any pharmacokinetic interaction, but due to pharmacodynamic interactions [22,23]. Conversely,
alcohol modulated the effects of anti-inflammatory drugs via pharmacokinetic interactions [24]. Taken
together, these observations indicate that an understanding of the alcohol-drug interaction may be
essential to develop new strategies for treatment of addiction. Therefore, the aim of this review article
is to decipher the common and drug-specific mechanisms underlying interaction between alcohol and
cocaine, METH, nicotine, opioids, cannabis or GHBA. The overall hypothesis is that alcohol modulates
the effects of cocaine, METH, nicotine, opioids, cannabis or GHBA via a common mechanism involving
pharmacokinetics and pharmacodynamics, and/or drug-specific mechanisms addressed in Sections 2
and 3, respectively (Figure 1).
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2. Common Mechanisms of the Alcohol-Drug Interactions

People abusing alcohol or suffering from alcoholism tend to use multiple illegal and addictive
drugs either sequentially or simultaneously [4,5]. Alcohol interacts with the co-abused drug and,
additively or synergistically, modulate their effects via common pharmacokinetic (interference with
the drug’s metabolism) and pharmacodynamic (modulation of the drug mechanisms) mechanisms
detailed in the following sub-sections.

2.1. Pharmacokinetic Mechanisms of Alcohol-Drug Interactions

Alcohol, when ingested orally, undergoes substantial first-pass metabolism pre-systemically in
stomach and systemically in liver [25]. Alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases
(ALDHs) metabolize alcohol into acetaldehyde and acetate, respectively [25]. In liver, alcohol induces the
cytochrome P450 enzymes CYP2E1, CYP1A2 and CYP3A4 (ADH >> CYP2E1 = (CYP1A2 + CYP3A4)) that
metabolize alcohol [26], many drug and pharmaceuticals [27,28]. Alcohol-induced modulation of these
enzymes may also affect the drug’s pharmacokinetics (Figure 2, [11]). Accumulation of acetaldehyde may
induce disulfiram-like reaction. In general, the following alcohol-drug interactions have been reported
(Figure 2):
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i. In the absence of alcohol, drugs are metabolized via liver CYP enzymes and the metabolites are
excreted [11,29].

ii. Acute low dose of alcohol exposure in alcohol-naïve subjects is metabolized to acetaldehyde
mostly by ADHs, but acute high-dose or chronic alcohol exposure may be metabolized by both
ADH and CYP enzymes listed above. CYP enzymes remain induced in alcohol abstinent subjected
chronically exposed to alcohol [11].

iii. In alcohol-naïve subjects using alcohol and another drug, acute dose of alcohol may compete with
the drug for the same set of CYP enzymes and inhibit a drug’s metabolism. This may enhance
the drug’s availability and ensuing increase in the harmful side effects from the drug [29].

iv. In recently abstinent chronic alcohol drinker, many drug-metabolizing CYPs remain induced,
thus decreasing the drug’s availability and diminishing its effects for several weeks after drinking
ceased. This suggests that a recently abstinent chronic drinker may need higher doses of
medications than those required by nondrinkers to achieve therapeutic levels of certain drugs [30].

v. CYP enzymes activated by chronic alcohol consumption transform some drugs into toxic
metabolites that can damage the liver or other organs [11].

These observations suggest that the drug and alcohol pharmacokinetics may play an important
role on determining consequences of the alcohol-drug interaction. Earlier studies [30,31] have shown
that the interaction pharmacokinetics can be predicted based on the metabolic profile of the drug.
In general, alcohol exposure may modulate drug accumulation (Cmax and AUC) by modulating their
metabolism and excretion.

Parker and Laizurs [32] studied effects of alcohol on pharmacokinetics of cocaine administered
via oral and intravenous (i.v.) administration (Table 1). They showed cocaine area under the
curve (AUC0–∞) and benzoylecgonine (BE) AUC0–∞ values were approximately 5.5-fold and 2-fold,
respectively, higher after i.v. compared with oral administration. Alcohol exposure significantly
increased (3 to 4 folds) oral cocaine systemic bioavailability and peak concentration (Cmax) values,
respectively, but alcohol did not affect oral cocaine elimination half-life. The BE AUC0–∞ values were
approximately 2.5-fold higher with alcohol cocaine co-administration than with oral cocaine given
alone. The mean cocaethylene concentration was 30.9 ± 7.3 ng/mL. Compared with oral cocaine
administered alone, alcohol co-administration also reduced the AUC ratio by 40%. Alcohol did not
significantly affect the AUC ratios for intravenous cocaine. Similar to the observations of Parker and
Laizurs [32], Pan and Hedaya [33] also showed that alcohol exposure increased systemic bioavailability
of intraperitoneal administered cocaine.

Table 1. Effects of alcohol on cocaine and benzoylecgonine pharmacokinetic parameters [33].

Indices Oral Cocaine Oral Cocaine +
Alcohol

Intravenous
Cocaine

Intravenous
Cocaine + Alcohol

AUC0–α (mg·min/L) 15.0 ± 4.7 *× 58.0 ± 10 83.1 ± 4.7 × 110.3 ± 22.5

CL (L/min) 5.6 ± 1.8 *× 1.6 ± 0.35 1.0 ± 1.8 × 0.74 ± 0.2

Cmax (ng/mL) 116.0 ± 98 *× 331.0 ± 131 2677 ± 98 2885 ± 702

Tmax (min) 83.6 ± 46 99.8 ± 32.5

T1/2 (min) 85.2 ± 6.6 84.2 ± 9.1 75.0 ± 6.6 *× 84.0 ± 8.2

F 0.2 ± 0.05 × 0.7 ± 0.17

CE Cmax (ng/mL) ND 30.9 ± 7.3 ND ND

BE AUC0–α (mg·min/L) 172.0 ± 46 *× 410.0 ± 82 375.0 ± 46 407.0 ± 110

BE/cocaine AUC0–α 11.9 ± 3 *× 7.1 ± 1.5 4.9 ± 3 3.7 ± 0.6

AUC: area under the plasma concentration–time curve, CL: clearance, Cmax: maximum concentration,
T1/2 elimination half-life, Tmax: time to Cmax, BE: benzoylecgonine. * p < 0.05 compared with intravenous cocaine,
× p < 0.05 compared with corresponding alcohol group given by the same route.
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The pharmacokinetics of alcohol-cocaine interaction is determined by cocaine’s complex
metabolic pathways (Figure 2) involving (i) pre first-pass and first-pass metabolism of cocaine
to form BE and ecogonine methyl ester, (ii) conversion of cocaine to norcocaine by hepatic
butyrylcholinesterase and p450 enzymes, and (iii) alcohol mediated formation of cocaethylene and
norcocaethylene [34]. Patrick et al. [35] have shown alcohol to be a potent inhibitor of carboxyesterases
and butyrylcholinesterase, resulting in accumulation of cocaine in the body. Parker et al. [32] have
shown that alcohol suppressed first pass metabolism and elimination of cocaine. Taken together, these
observations suggest that alcohol exposure may increase cocaine bioavailability and toxicity.
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Figure 2. Effects of alcohol exposure on cocaine metabolism.

Alcohol, in addition to interacting with cocaine, also interacts with other drugs, albeit to different
degrees. Li et al. [36] have shown that alcohol increased absorption and Cmax of METH and its metabolite,
amphetamine (AP) without altering their elimination. They also suggested that an alcohol-induced
increase in toxicity of METH may be due to pharmacodynamics mechanisms. Adir et al. [37],
Rose et al. [38] and Ferguson et al. [39] have provided indirect evidence that alcohol alters distribution
and metabolism of nicotine, thus altering its toxicity. Cannabis and opioids, on the other hand poorly
respond to alcohol exposure. Toenne et al. [40,41] have shown that alcohol increased half-life and
decreased blood concentrations of cannabis but did not affect concentrations of its metabolites such as
11-OH- tetrahydrocannabinol (THC) and 11-nor-9-carboxy THC. Hartman et al. [42] and Lukas et al. [43]
reported significant increases in THC and cannabidiol (CBD) concentrations, while two studies found no
change. Likely, alcohol did not modify metabolism and pharmacokinetics of opioids.

2.2. Pharmacodynamics of Alcohol-Drug Interactions

Pharmacodynamics defines (i) the effects of alcohol and drug in body, especially at the target
sites, and (ii) how drug combinations influence each other’s effects directly [44–46]. Figure 3 describes
pharmacodynamic interactions of alcohol (a neuro-inhibitor) with neuro-stimulatory drugs (such
as cocaine, METH or nicotine) and neuro-inhibitory drugs (such as opioid, cannabis and GHBA).
In general, the following alcohol-drug pharmacodynamic interactions have been reported:

i. The acute neuro-inhibitory effects of the alcohol, opioids, cannabis and GHBA are caused via
development of inhibitory postsynaptic potential (IPSP). The acute neuro-excitatory effects of
cocaine, METH, and nicotine cause development of excitatory postsynaptic potential (EPSP) [11].
Therefore, acute alcohol exposure may attenuate the effects of neuro-stimulatory drugs but
augments the effects of neuro-inhibitory drugs (Figure 4A). As an example, alcohol cause
neuro-inhibition by inducing Cl− influx into the neurons [47], resulting in development of
neural membrane IPSP [48,49] that antagonizes the effects of stimulatory drugs, but additively or
synergistically augment the effects of inhibitory drug.
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ii. Chronic alcohol and drug exposure results in in development of tolerance and addiction via a
common addiction mechanism (Figure 3). Therefore, chronic alcohol exposure may negatively
impact addictive effects of both excitatory and inhibitory drugs.

iii. Figure 4 shows receptor overlap in development of alcohol, nicotine, and psycho-stimulant-
(such as cocaine and METH) dependence. The genes listed in Figure 4 have received strong
statistical and biological (knockout studies) support for association with multiple substances [50].
The nAChR gene variants such as gene cluster CHRNA5/A3/B4 encoding α3, β4, and α5 nAChR
are associated strongly with poly-drug addiction [51–54]. The possible role of nAChR in alcohol
dependence is further validated by the observation that varenicline, a partial agonist at α4β2
nAChRs and a full agonist at the α7 nAChR [55] reduced alcohol craving and total alcohol
consumption in patients with alcohol use disorders [56,57].
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Figure 4. Overlapping receptor systems involved in nicotine and alcohol or psychostimulant dependence.
Genetic and pharmacological studies in both humans and rodents suggest that co-use of nicotine and
alcohol or psychostimulants is mediated, in part, by activity at overlapping substrates. In particular,
cholinergic and serotonergic systems underlie reward-related behaviors, including drug intake, preference,
and dependence to all three drugs of abuse. Common addiction genes are described by Cross et al [50] and
Li and Burmeister [58]. Abbreviations: *: Nicotinic Acetylcholine Receptors (nAChRs) containing other
subunits, ANKK1: ankyrin repeat and kinase domain 1, CHRN: cholinergic receptor nicotinic, C: CHRN,
D2: dopamine receptors, Glu: glutamate, HTR: 5-hydroxytryptamine (serotonine) receptorts, KOR: kappa
opioid receptor, NMDA: N-methyl-D-aspartate, SLC6A4: solute carrier family 6 member 4. Reproduced
from [50] with permission.

A relatively older study conducted by Pan and Hedaya [33] have described negative effects of
alcohol on pharmacodynamics of cocaine by using indices that relate brain cocaine concentrations
with biological functions (Table 2). For example, Emax describes brain DA concentration measured
at maximum change in the brain cocaine concentration (δCmax), and EC50 describes a cocaine
concentration that caused 50% Emax response. Similarly, the cardiac indices assessed rate constants for
the direct effects of cocaine on cardiac functions. An increase in Emax indicates augmentation of DA
release at δCmax cocaine concentrations. These studies showed that cocaine + saline administration
increased the brain extracellular fluid (ECF) DA and nucleus accumbens (NAc) cocaine concentrations
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that peaked within 20–40 min, then gradually declined. Alcohol co-administration with cocaine
caused significantly higher estimate for Emax values (not significant) but significantly lower IC50 values
(Table 2). This suggests that alcohol exerts a direct stimulatory effect on the brain DA system in cocaine
administered subjects. Unlike the neurological effects, the cardiovascular parameters were not different
after cocaine + normal saline and cocaine + alcohol administration. This suggests that the same brain
ECF cocaine concentration produced higher neurochemical response after co-administration of alcohol,
causing more intense and longer lasting euphoric effects. This stronger response may be caused by the
pharmacologically active metabolite cocaethylene [59].

Table 2. Pharmacodynamic parameters defining the effects of alcohol on Cocaine’s adverse effects in
Wistar Rats (Mean ± SE, n = 8) [33].

Pharmacodynamic Parameters Cocaine (ip) a + Normal Saline Cocaine (ip) a + Alcohol (po)

A. Neurochemical

Emax (% of baseline) 850 ± 200 1550 ± 640
EC50 (ng/mL) 3400 ± 580 2000 ± 650

N 1.23 ± 0.17 2.31 ± 0.29 b

B. Cardiovascular

kin (% of baseline/min) 23.8 ± 5.1 36.0 ± 13.0
Kout (min−1) 0.218 ± 0.047 0.31 ± 0.11

Imax 0.304 ± 0.033 0.307 ± 0.035
IC50 (mg/mL) 6700 ± 2100 5600 ± 710

Rmax (% of baseline) 146 ± 6.9 148 ± 8.9
N 3.0 ± 1.5 3.6 ± 1.9

a: Cocaine dose, 30 mg/kg; alcohol dose, 5 g/kg; b: Significantly different from the cocaine+normal saline treatment
group (p < 0.05). Abbreviations: Emax: ECF DA concentration measured at maximum change in brain ECF
cocaine concentration, EC50: brain ECF cocaine concentration causing 50% Emax response, n: sigmoidicity factor,
kin: apparent 0-order rate constant for response production, kout: 1st-order rate constant for response dissipation,
Imax: the maximum inhibition factor producing the response, IC50: cocaine concentration that produces 50% effect,
and Rmax maximum response.

Robinson et al. [60] have demonstrated that an antiepileptic drug, levetiracetam (LEV) that is a
potent inhibitor of Glu-induced neuro-excitation, differentially modulated the effects of cocaine and
alcohol. LEV pretreatment attenuated the development of locomotor sensitization to repeated alcohol
exposure but enhanced both acute locomotor stimulation by cocaine and development of locomotor
sensitization following repeated exposure. Although a possible mechanism underlying the ability
of LEV to differentially modulate the effects of alcohol and cocaine is not fully understood, studies
have proposed that the two substances may act at different sites of Gluergic neurotransmission in
the mesocorticolimbic circuitry: alcohol and cocaine modulating Gluergic activities in VTA and NAc,
respectively [61]. Acute cocaine administration stimulated Glu release in NAc, but not in VTA [62],
while acute alcohol increased the firing rate of DAergic VTA neurons [63]. These differences may
explain in part why LEV blocks the development of locomotor sensitization to alcohol but not to
cocaine, despite observations that increased Gluergic sensitivity of DAergic VTA neurons is an early
triggering event in sensitization to both cocaine and alcohol [64].

Taken together, these observations suggest that the neuro-inhibitory and neuro-excitatory
substances may cause acute effects by diverse mechanisms, but chronic addictive effects via a common
mechanism. Alcohol may augment the acute effects of neuro-inhibitory but attenuate the acute effects
of neuro-excitatory drug. However, alcohol may augment the addictive effects of both groups of drugs.

3. Specific Alcohol-Drug Interactions

As discussed earlier, the brain neurotransmitter (NTs) systems including, but not limited to,
endogenous opioids (eOPs), DA, GABA, glutamate (Glu), glycine (Gly), serotonin (5-HT), excitatory
amino acids (EAAs) and their respective receptors play important roles in rewards, aversive effects and
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addictive effects of alcohol and other drugs [65]. In drug-free situations, all NTs interact with each other
(positively (+) or negatively (-) as shown in Table 3) and maintain a NT balance. Depending on the
type of substance (alcohol, cocaine, METH, nicotine, opioids, cannabis, and GHBA), different groups
of NTs have been suggested as direct targets. For example, GABA and Glu are key targets of alcohol
that simultaneously increases inhibitory neurotransmission through GABA and reduces excitatory
neurotransmission through Glu [66]. Unlike alcohol, DA and ACh are direct targets for amphetamine
and nicotine, respectively. Amphetamine directly increases the DA level in the synaptic cleft [67],
whereas nicotine mimics psychopharmacological effects of ACh and modulates DA release [68,69].
In addition to the direct effects, addictive substances can also modulate other NTs through indirect
pathways. For example, alcohol’s direct effect on the striatum Glu may modulate, GABAergic activity in
the NAc. Direct and indirect mechanisms both may play an important role in alcohol-Drug interactions.

Table 3. Positive (+) or negative (-) interactions among six neurotransmitter systems in the brain.
Abbreviations are shown in the text [70].

NTs Glu GABA 5-HT DA NA ACh

Glu + + + - +

GABA - - - - -

5-HT + - + + -

DA - - - + -

NA - - - + -

ACh + + + + +

An interactive mechanistic diagram showing possible roles of the brain NT and receptor systems in
different brain regions are shown in Figure 5A. The details are discussed in the figure legend. As shown
in Figure 5B, a direct alcohol-induced activation of hypothalamus OPergic neurons may indirectly
modulate GABAergic neurons followed by modulation of DAergic neurons. This may modulate the
effects of amphetamine that acts by directly activating DAergic neurons. Thus, direct and indirect
effects of alcohol may modulate effects of co-administered drug. The following paragraph includes a
brief discussion of the overall mechanism of action of alcohol.

Acute alcohol exposure, in addition to activating the alcohol metabolizing enzymes such as
alcohol dehydrogenase (ADH), acetaldehyde dehydrogenase (ALDH) and microsomal P450 enzymes,
also causes a psychotropic depression of the CNS, leading to various behavioral and biological
alterations [25,26]. Alcohol-induced depression is causally related to (i) direct increase in GABAergic

activities, (ii) direct decrease in Gluergic activities and associated decrease the intracellular concentration
of calcium ions (Ca2+), and (iii) indirect modulation of DAergic, 5HTergic and AChergic activities [71–73].
All processes, except the DAergic activity, may be negatively regulated by acute alcohol exposure [74].
In contrast, chronic alcohol use causes tolerance and addiction by (i) down-regulating GABA receptors
and phosphorylation of ERK which is regulated by GABA receptors, and (ii) activating Glu receptors
in the hippocampus that is involved in seizures development during alcohol withdrawal [74–76].
Chronic alcohol abuse may also prevent activation of the memory circuit and the explicit memory
supported by the hippocampus [77]. Alcohol withdrawal in addicted subjects decreases GABAR but
increases GluR activities, resulting in strong neuro-stimulation (red arrows). Figure 5B shows multiple
neurotransmitters and neuromodulators that collectively mediate the reward-profile of alcohol [78].
In general, alcohol directly modulated OPergic, GABAergic and Gluergic, and indirectly modulated
DAergic, 5-HTergic and cholinergic (AChergic) presynaptic neurons, thus modulating the release of
neurotransmitters and ensuing modulation of postsynaptic neurons. Binding of neurotransmitters to
the postsynaptic receptors release may modulate respective behavioral traits.
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Figure 5. (A) Possible roles of Gluergic, GABAergic and AChergic neurons in regulation of ventral
tegmental area (VTA) DAergic neuron excitability. Opioid (OP) receptors are not shown in this diagram).
The presynaptic DAergic neurons (1) express GABABR, DAR1, mGluR2/3 and nicotinic (α7 and α4β2)
receptors thus the neuronal activity is modulated by Glu, GABA, ACh and nicotine, and (2) received
signals form excitatory Gluergic neurons releasing Glu, excitatory Cholinergic neurons releasing ACh,
and inhibitory GABAergic neurons releasing GABA. The released NTs bind to their respective receptors
on DAergic neurons and elicit excitatory (depolarization) or inhibitory (hyperpolarization) response.
The Gluergic neurons also express mGluR2/3, AChR, GABABR and DAR1 receptors, thus the neuronal
activity is modulated by Glu, GABA and ACh. The GABAergic interneurons receive receptors signals
from GABAergic and Cholinergic efferent. (B) Interaction of OPergic neurons (endorphinergic neurons
release endorphin, a MOR agonist, while dynorphinergic neurons release dynorphin, a KOR agonist) with
GABAergic interneurons and DAergic neurons. The DAergic neurons from the VTA project to ANc and
are under tonic inhibition by GABAergic interneurons that are under direct inhibition by endorphinergic

neurons from the hypothalamus Therefore, stimulation of endorphin release in VTA inhibits GABAergic

interneurons and ensuing disinhibition of the DAergic neurons, leading to increased DA release in
NAc. Acute alcohol stimulates endorphin and met-enkephalin release, leading to an increase in DA
release, while chronic alcohol stimulates dynorphin release that could attenuate DA release in the NAc.
Abbreviations: DA: dopamine, DAR: DA receptors, DAT: DA transporter, Glu: glutamate, and α7 and
α4β2: nicotinic receptors. The VTA DAergic neurons receive signals from Gluergic (releases excitatory
neurotransmitter, Glu), Cholinergic (releases excitatory NT, Ach), and GABA interneurons (releases
inhibitory neurotransmitter, GABA) that receive signals from GABAergic (releases GABA) and Cholinergic

(releases ACh) neurons. Binding of GABA to its receptors on. GABAergic afferent neurons releases GABA
inhibits GABA interneurons, thus activating the DAergic neurons. Symbol-i: the sites of actions for alcohol,
symbol-ii: the site of action for cocaine, and symbol-iii: the site of action for nicotine.

These observations suggest that acute and chronic alcohol exposure may target different sets
of the CNS NTs and, therefore, differently modulate the effects of excitatory and inhibitory drug.
Acute alcohol exposure, due to its depressive effects, may augment the effects of neuro-inhibitory
drugs (cannabis or GHBA), but suppress the effects of neuro-stimulatory drugs (cocaine, METH
and nicotine). However, chronic alcohol exposure may augment the neuro-stimulatory drugs but
suppressing neuro-inhibitory Drugs. Interaction of alcohol with other drugs are discussed below.

3.1. Alcohol-Cocaine Interaction

Cocaine is a powerful addictive, psychoactive, stimulant drug illegally available on the streets
as a fine, white powder. Whatever the form, cocaine acts as a strong stimulant substance that can
(i) provide a rapid-onset of rewarding high, (ii) speed up various physiologic processes via its CNS
effects, and (iii) influence both short- and long-term mental health. Acevedo-Rodriguez et al. [79] have
shown that cocaine, at concentrations around 0.5 µM that is readily achievable in cocaine abusers,
inhibited the DA transporter (DAT)-mediated uptake of DA. At concentration around 4 µM, cocaine
inhibited nAChRs and altered DA release [80]. At cocaine level ≥20 µM, its anesthetic effect may be
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triggered (Figure 6). This suggests that the mechanistic effects shown in Figure 6 may contribute to
the cocaine-induced increases the ratio of phasic to tonic DA release and thus potentially enhances its
reinforcing abilities [81].
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Epidemiological studies have shown that, compared to the control subject (cocaine free),
the prevalence of alcohol use was found 89% higher among cocaine dependents [82,83], possibly due to the
perception of higher increase of reward effects when alcohol and cocaine were co-administered compared
to either drug administered alone [84–86]. In a study conducted on rats, intravenous injections of cocaine
increased alcohol drinking, suggesting that cocaine potentiated alcohol seeking [87]. A preclinical study
has shown a higher susceptibility of the reinforcing effects of cocaine in selectively bred alcohol preferring
(P) rats compared to its outbred Wister rats, suggesting a higher sensitivity of alcoholics to the reinforcing
effects of cocaine [88] Similarly, it has been revealed that genetically predisposed subjects for alcohol
dependence have a higher rate to be cocaine dependents [89]. This suggests that alcohol and cocaine,
when co-administered, potentiate the effects of individual drugs. Different aspect of interaction between
alcohol and cocaine exposure are shown in Figure 7 and described below.

Cocaine and alcohol co-administration generates a unique metabolite, cocaethylene that is
equipotent in inhibition of binding to the dopamine and serotonin reuptake complex [90,91].
Cocaethylene may be less anxiogenic and more reinforcing [92,93], but it is more lethal than cocaine [94]
Concurrent use of cocaine and alcohol has been associated with greater risk of sudden death than after
cocaine alone [95]. Cocaethylene has been detected in wastewater, an observation that has been used
as evidence of cocaine and alcohol co-abuse in urban area. In addition, cocaethylene concentrations in
wastewater was significantly higher during weekends compared to weekdays, further suggesting a
higher co-abuse of cocaine and alcohol [96].
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CNS functions and prenatal effects.

Alcohol administration has been shown to increase the plasma concentration of cocaine [97],
leading to an increase in cocaethylene concentration in plasma and decrease in benzoylecgonine renal
excretion [98]. Although alcohol ingestion did not alter cocaine half-life, it significantly increased
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cocaethylene’s half-life [99], thus increasing the exposure to cocaethylene’s deteriorating toxic effects.
Cocaine and alcohol co-exposure also has deleterious effects on cardiovascular and endocrine systems
as evidenced by an increase in heart rate, systolic blood pressure, cortisol, and prolactin concentrations,
and cerebral blood perfusion [100]. It has been shown that cerebral hypo-perfusion was more common
among individuals taking cocaine and alcohol together compared to individuals taking cocaine or
alcohol alone [101,102].

Several indices of neuropsychological performances such as intelligence, memory, verbal learning
were found to be negatively affected by the concurrent intake of cocaine and alcohol compared to
either drug administered alone [103,104]. The sense of pleasure and euphoria increased in co-abuse of
alcohol and cocaine and consequently elevated the risk of dependence and toxicity [105]. Alcohol and
cocaine co-exposure increased extracellular DA concentration in the NAc, a region involved in the
rewarding and reinforcing effects of drugs of abuse [106–108], compared to either drug administered
alone in rats [109]. One recent study has demonstrated a significant interaction in prenatal co-exposure
of cocaine and alcohol on cortical thickness in youths prenatally exposed to these drugs [110,111].

3.2. Alcohol-Methamphetamine Interactions

METH’s main mechanism of action is its ability to increase in neuronal release of DA into the
NAc, an effect mediated via alterations in both the DAT and the vesicular monoamine transporter-2
(VMAT-2) [112]. In addition, METH phosphorylates DAT via protein kinase C leads to internalization
of DAT, thus impairing the normal function of DAT [113]. Concurrent with reuptake inhibition, METH
also induces DA efflux into the synapse (Figure 8).
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Figure 8. Mechanism of action of METH on DA neurotransmission. [113. 1: Methamphetamine (MA)
inhibits DA reuptake, 2: MA phosphorylates DAT resulting in its internalization, 3: MA inhibits DA’s
synaptosomal uptake via vesicular monoamine-transporter 2 (VMAT-2), 4: intracellular uptake of MA
reverse transports DA via DAT into the synaptic cleft, 5: MA diffuses into the synaptosome impairing
DA storage.

Alcohol and METH, often used together, cause co-morbid disorder [113,114]. Approximately
77% of people diagnosed with amphetamine dependence also have an alcohol use disorder [115,116].
Within the population of METH users, alcohol consumption increases the probability of METH use by
four-fold [117–119]. Figure 9 shows possible effects of concurrent alcohol and METH exposure. METH
abusers frequently use alcohol to have a higher level of euphoric effects. But, alcohol may inhibit METH
metabolism, resulting in higher blood METH concentration, with an increase in its stimulating effects
on brain and heart, resulting in significant negative effects on mood, performance, and physiological
behaviors [120]. Co-exposure to alcohol and METH also resulted in (i) synergistic depletions of DAT,
SERT, and DA and 5HT content, and (ii) increase in LPS and COX-2 in rats [118,121]. This suggests that
prior alcohol drinking may also increase the inflammatory mediators, thus enhancing neurotoxicity.
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Mendelson et al. [122] in humans and Wells et al. [123] in mouse have shown that in utero exposure of
a combination of alcohol and METH may cause greater toxicity in offspring than either alcohol or METH.
This interaction may be due to the increased production of reactive oxygen species (ROS) that alter signal
transduction, and/or oxidative stress-induced damage to cellular macromolecules like lipids, proteins, and
DNA, the latter leading to altered gene expression [123]. This may be causally related to the development
of cardiac cytotoxicity associated with adverse cardiovascular effects. Andez-Lopez et al. [124] have shown
that, in addition to alcohol-METH combination, the 3,4-Methylenedioxy-methamphetamine (Ecstasy) and
alcohol combination also augmented euphoria and wellbeing than Ecstasy or alcohol alone. Subjects may
feel euphoric and less sedated and might have the feeling of doing better, but actual performance ability
continues to be impaired by the effect of alcohol.

3.3. Nicotine

Nicotine is a highly addictive substance of tobacco, acting via binding to the nicotinic acetylcholine
(ACh) receptors or nAChRs that respond to the neurotransmitter ACh. Nicotine addiction is mediated
through nAChR expressed on most neurons in the brain. Tolu and Eddine [125] showed that
nAChR-mediated activation of GABA neurons in the VTA plays a crucial role in the control of
nicotine-elicited DAergic activity (Figure 10). DA and GABA make a concerted effort to generate
reinforcing actions of nicotine through DAergic neurons. Therefore, GABAergic neurons may be a
potential drug development target for cessation of drug development.

Biomedicines 2019, 7, x 11 of 31 

 

Figure 9. Effects of METH exposure on alcohol’s pharmacokinetics, cardiovascular function, CNS 
functions and prenatal effects. 

Mendelson et al. [122] in humans and Wells et al. [123] in mouse have shown that in utero 
exposure of a combination of alcohol and METH may cause greater toxicity in offspring than either 
alcohol or METH. This interaction may be due to the increased production of reactive oxygen species 
(ROS) that alter signal transduction, and/or oxidative stress-induced damage to cellular 
macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression [123]. 
This may be causally related to the development of cardiac cytotoxicity associated with adverse 
cardiovascular effects. Andez-Lopez et al. [124] have shown that, in addition to alcohol-METH 
combination, the 3,4-Methylenedioxy-methamphetamine (Ecstasy) and alcohol combination also 
augmented euphoria and wellbeing than Ecstasy or alcohol alone. Subjects may feel euphoric and 
less sedated and might have the feeling of doing better, but actual performance ability continues to 
be impaired by the effect of alcohol. 

3.3. Nicotine 

Nicotine is a highly addictive substance of tobacco, acting via binding to the nicotinic 
acetylcholine (ACh) receptors or nAChRs that respond to the neurotransmitter ACh. Nicotine 
addiction is mediated through nAChR expressed on most neurons in the brain. Tolu and Eddine [125] 
showed that nAChR-mediated activation of GABA neurons in the VTA plays a crucial role in the 
control of nicotine-elicited DAergic activity (Figure 10). DA and GABA make a concerted effort to 
generate reinforcing actions of nicotine through DAergic neurons. Therefore, GABAergic neurons may 
be a potential drug development target for cessation of drug development. 

 

Figure 10. A schematic representation of the AChergic signaling in VTA and afferents. The DAergic 
output neuron contains high-affinity b2-nAChRs that are inhibited by GABA releasing from GABAergic 
interneurons containing high-affinity b2-nAChRs. GABAergic, Gluergic, and AChergic projections arrive 
from the ventral pallidum (VP), the laterodorsal tegmental nucleus and LDTg/PPTg pontine 

Figure 10. A schematic representation of the AChergic signaling in VTA and afferents. The DAergic

output neuron contains high-affinity b2-nAChRs that are inhibited by GABA releasing from GABAergic

interneurons containing high-affinity b2-nAChRs. GABAergic, Gluergic, and AChergic projections arrive
from the ventral pallidum (VP), the laterodorsal tegmental nucleus and LDTg/PPTg pontine tegmental
nuclei, respectively. DAergic neurons release DA in the NAc, which show biochemical alterations after
alcohol exposure.
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Alcohol and cigarette smoking is the most common practice globally that may be most costly in
terms of health and societal costs [126–128]. Nicotine dependents may have a high tendency to be
alcohol dependents [129]. It has been reported that more than 80% of chronic alcohol users are also
smokers [130–132]. In a preclinical study, rats chronically co-exposed to alcohol and nicotine showed
higher nicotine self-administration as compared to drug self-administered alone [133]. The overall
effects of alcohol-nicotine interaction are shown in Figure 11.
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Blomqvist et al. [134,135] have proposed that alcohol modulates the reinforcing effects of nicotine
by directly interacting with the nAChRs, β2 and β4 [136,137]. Lüscher and Malenka [138] have shown
that chronic nicotine exposure triggers a conformational change in β4 nAChRs that initiates various
forms of synaptic plasticity and modify the VTA-DA neuron’s responses to alcohol and alcohol drinking
behaviors. Norbinaltorphamine (norBNI), a KOR antagonist, robustly increased alcohol and nicotine
self-administration in adult male rats but not in female rats [139,140]. Taken together, these findings
suggest that nicotine, from either tobacco or e-cigarette use, may increase the vulnerability of teenage
boys to alcohol abuse.

3.4. Alcohol-Opioid Interactions

Opioids, addictive substances derived from the poppy seedpod, occurs as (i) a natural drug such as
opium, morphine and codeine, and (ii) a synthetic drug such as dilaudid, demerol, oxycodone, vicodin,
fentanyl, methadone or heroin. Opioids are commonly used analgesic agent with potential for abuse
as street drug [141,142]. In body, the opioid drugs compete with the receptors for endogenous opioid
peptides (eOP) such as β-endorphin, enkephalins, and dynorphins released by selective OPergic neurons.
The eOPs, nOPs and sOPs bind to three families of opioid receptors (OPRs): µ (MOR), δ (DOR), and
κ (KOR) with differing affinities [143]. The three OP receptors (OPRs) are widely distributed in the
brain regions involved in pain modulation, reward, stress responses, and autonomic control [144]. OPRs
selectively interact with G-proteins (composed of two subunits, Gαi, αs or αo and βγ subunits) and
form MOR-Gαiβγ for β-endorphin and endomorphin 1, DOR-Gαoβγ for enkephalins, and KOR-Gαsβγ

for dynorphin and endomorphin 2 [145]. The OPR-G protein complex (such as MOR-Gαiβγ), upon
binding to an eOP or a sOP, dissociates into MOR-Gαi subunit and βγ subunits. MOR-Gαi subunit
directly inhibits adenylyl cyclase (AC) that reduces cAMP formation and activates inwardly rectifying K+

channels (GIRK+), causing neuro-inhibition and ensuing analgesic response [146]. The βγ dimer directly
inhibits voltage-dependent Ca2+ channels [147]. Taken together, these changes block the presynaptic
signal from activating postsynaptic terminal, thus causing analgesia.
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Acute alcohol exposure has been shown to potentiate the opioid-induced increase in analgesia
and CNS depression, leading to serious side effects including respiratory distress, coma, and
death [148,149]. Chronic alcohol exposure may develop coaddiction when addiction to one drug (such
as an opioid) enhances craving for another such as alcohol [150–155]. A Canadian study has shown
that approximately 82% of apparent opioid-related deaths from 2016 to 2017 also involved one or more
type of non-opioid substances including alcohol [148]. Polettini et al. [156] have shown that heroin, a
dangerous illegal opioid, can interact with alcohol and produce a sensation of greater pleasure than the
two individually, while at the same time inhibiting the respiratory system. In addition, alcohol may
exacerbate the neuronal situation by inhibiting heroin metabolism (pharmacokinetic mechanism) [157].
Despite the seriousness of the alcohol-opioid interaction, the underlying mechanisms are not fully
understood. Therefore, the aim of proceeding sub-sections are to discuss combined effects of alcohol
and opioid on analgesia, CNS inhibition and addiction.

Figure 12 shows signaling pathways for analgesic effects of opioids and effects of alcohol drinking
on it. In addition to the OPRs, type-2 G-protein coupled inwardly rectifying potassium (GIRK2)
channels are also implicated in analgesic action of opioid drugs (Figure 16) [158]. This hypothesis is
supported by the observations that the analgesic effects of opioids were absent in GIRK2 null-mutant
mice [159,160] or by OPR antagonist [161]. Alcohol exposure augments the opioid’s analgesic response
by co-activating both OPR and GIRK2 channel activations [161,162]. Unlike the opioid-induced
analgesia, the NMDAR-mediated analgesia may occur independently of GIRK2 channels are not
modulated by alcohol exposure [162].
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Figure 12. Signal pathways mediating opioid-induced analgesia. Opioids distinctively activates MOR,
DOR, and KOR, that leads to Gi/o protein activation. The activated Gi/o protein activates the GIRK
channel and inhibits the function of adenylyl cyclase and calcium channels. Alcohol activates the GIRK
channel directly and modulates the functions of other target molecules. Non-steroid anti-inflammatory
drugs (NSAIDs) induce analgesia in a GIRK channel independent fashion. In weaver mutant mice,
GIRK channel activation either by Gi/o protein or by alcohol is impaired, and both opioid- and
alcohol-induced analgesia is reduced, whereas NSAIDs normally induce analgesia.

Kranzler et al. [163] and Zhang et al. [164] have shown that the A118G variant of the MOR1
(OPRM1) gene may be an obvious candidate mediating alcohol-induced analgesia. A118G carriers
experience attenuated pain sensitivity that may alter analgesic responses to alcohol [141]. The A118G
or val158met polymorphism of the catechol-O-methyl-transferase (COMT) gene could be a possible
link between alcohol’s analgesia and reinforcement activities [165,166]. The val158met carrier exhibit
higher COMT levels, lower DAergic neurotransmission, elevated activation of the MORs [167,168],
and suppressed MOR NT response to pain [169].
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Possible CNS mechanisms underlying the addictive effects of opioids alone or in combination
with alcohol are hypothesized in Figure 13. Acute alcohol exposure causes reinforcing (euphoria, red
font) and weak analgesia, while acute opioid exposure (blue font) causes strong analgesia (Figure 13A
red font). Acute alcohol activates DAergic neurons, thus releasing endogenous opioids (eOPs) that
inhibits GABAergic activity either by directly binding to the OPRs or via inhibiting Glu release from
the Gluergic neurons [170]. A decrease in GABA disinhibits postsynaptic DAINT neurons resulting in
an increase in DA release in NAc causing reinforcing and pleasure effects. However, acute exposure to
synthetic opioids such as morphine directly activates OPR-signaling, resulting in potent activation of
cAMP signaling and ensuing analgesia, with weaker reinforcing [171].
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Figure 13. Possible mechanisms underlying the reinforcing and analgesic effects of alcohol exposure. (A)
Acute alcohol exposure induces eOP release but inhibits Glu release from Gluergic neurons, resulting in
suppression of GABAergic neurons. Downregulation of GABAergic neurons disinhibits DAergic neurons,
resulting in an increase in DA release and ensuing reinforcement. Opioid exposure induces analgesia
via cAMP/CREB signaling. (B) In addicted subjects consuming alcohol, OPergic, Gluergic and GABAergic

neurons respond like the non-addicted subjects, but DAergic neurons and the analgesic pathway are less
responsive. Cumulatively, addicted subjects drinking alcohol exhibited poor opioid-induced analgesia
and euphoria. (C) Alcohol abstinence in addicted subjects result in hyperactivity of Gluergic but
downregulation of GABAergic neurons, causing neuronal excitation and the withdrawal symptoms.
Alcohol resumption restores opioid’s analgesic potency but to a lesser degree, but eOP release is restored.

The addictive effects of alcohol and opioids are mediated by a common addiction pathway
(Figure 13B) [172–174]. In alcoholic subjects, alcohol exposure reduces release of eOPs from OPergic

neurons, but activates Glu release from Gluergic neurons, resulting in an increase in GABAergic activity
and GABA release. As shown in Figure 13C, alcohol withdrawal causes further increase in Gluergic

activity and decrease in GABAergic activity. This results in amplification of the withdrawal symptoms.
Alcohol resumption establishes homeostasis by increasing GABAergic activity, while Gluergic activity
remains elevated.

Taken together, these observations indicate that alcohol and opioid drugs have numerous common
behavioral effects, including sedation, motor depression, and rewarding experiences, possibly related to
the effects of alcohol administration on release of eOP peptides [175,176]. An increase of eOP peptides
increase alcohol consumption that is blocked by nonselective opioid antagonists such as naloxone and
naltrexone [177,178]. Possible adverse effects of alcohol on opioids are shown in Figure 14.
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3.5. Alcohol-Cannabis Interactions

∆9-Tetrahydrocannabinol (THC), the main psychoactive component of cannabis [179], elicits its
acute effects via the endocannabinoid (eCB) type 1 (CB1) receptor (CB1R) [180]. THC has been linked
to the rewarding aspects and cognitive impairments of cannabis (Figure 15). 2-Arachidonoylglycerol
(2-AG), produced by diacylglycerol lipase (DAGL) in DAergic VTA neurons [181], acts on CB1Rs on
nearby Gluergic and GABAergic terminals. CB1Rs robustly inhibit GABA inputs onto VTA DA cells.
CB1Rs are also localized on Gluergic terminals synapsing on VTA DA neurons where eCBs mediate
retrograde suppression of excitation. Thus, eCBs fine-tune the activity of the mesolimbic DA projections
through modulating both excitatory and inhibitory signaling [182]. THC exposure disrupts the eCB
retrograde signaling system and produces complex, diverse and potentially long-term effects on the
DAergic system including increase in nerve firing and DA release in response to acute THC. However,
DAergic blunting may be associated with long-term use [183,184].
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Figure 15. Schematic description the endocannabinoid receptor signaling. Endogenous endocannabinoids,
N-arachidonoy-lethanolamine (anandamide or AEA) and 2-arachido-noylglycerol (2-AG) released by the
VTA neurons, bind to CB1 and CB2 receptors on Gluergic and GABAergic neurons, resulting in release
of Glu and GABA, respectively. Glu and GABA bind to their respective receptors on DAergic neurons
and induce DA release. Cannabis such as THC compete with ARA and 2-AG for CB1 (AEA >> 2-AG)
and CB2 (AEA ≈ 2-AG) receptors and disrupts normal endocannabinoid retrograde signaling from
DAergic neurons.
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Alcohol and cannabis, being neuro-inhibitory agents, share many behavioral abnormalities such
as euphoria, analgesia, sedation, hypothermia, cognitive and motor dysfunctions, etc. [185] Therefore,
combination of alcohol and marijuana in occasional cannabis users may additively alter the magnitude
of cognitive and motor impairments [186,187]. However, chronic cannabis use may develop tolerance
to the impairing effects of cannabis and/or alcohol. Studies have shown that approximately 58% of
adolescent drinkers also use cannabis [188], contributing to frequent comorbidity between alcohol
and cannabis use disorders [189]. Figure 16 [190] shows 30-day trends in alcohol and cannabis use
prevalence (1976–2011) among high school students. Plots 1 and 2 show percentage of students using
alcohol and cannabis, respectively, for the last 30 days, while plots 3 regular cannabis uses accompanied
by alcohol use some time and plot 4 shows cannabis use was almost always associated with alcohol use.
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Figure 16 suggests that a sizable proportion of US high school seniors used a combination of alcohol
and cannabis in social use situations. Alcohol and cannabis use during adolescence is of concern because
the introduction of drug combinations early may disrupt healthy brain development [191,192]. Studies
have shown that the hippocampus (a region associated with learning and memory formation [193]) may
be particularly vulnerable to structural damage caused by heavy alcohol and/or cannabis use, especially
during adolescence. Aloi et al. [194] have demonstrated differential patterns of dysfunction associated
with alcohol use disorder (AUD) and cannabis use disorder (CUD) symptoms. Elevated severity of
AUD symptoms was associated with (i) an increased amygdala response to positive relative to neutral
stimuli and (ii) a decreased responses associated with behavioral inhibition and executive attention during
incongruent and congruent trials, while elevated CUD symptomatology was associated with increased
responses in the posterior cingulate cortex, precuneus, and inferior parietal lobule for incongruent
relative to congruent and view trials. This suggests that correlates of AUD symptomatology may differ
from those of CUD symptomatology. Therefore, a combination of AUD and CUD may additively cause
greater brain damage than AUD or CUD individually as summarized in Figure 17.

Earlier studies [195–197] have identified mechanistic links between the effects of alcohol and
cannabinoids, both enhanced DA levels in the NAc by activating DAergic neurons in the VTA from
which the mesoaccumbal DA-mediated pathway originates. Hungund et al. [198] showed that alcohol
did not cause the release of DA in CB1

−/− mice or SR141716A, a selective cannabinoid receptor
antagonist, administered wild-type mice. Cohen et al. [199] showed that SR141716A reduced alcohol
consumption, possibly via reducing DA release in the NAc in mice. These results strongly suggest that
administration of cannabis and alcohol may additively enhance DA release the NAc. Guillot et al. [200]
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showed that, among people using cannabis and alcohol, the interplay between social anxiety and
coping-oriented motives for using one substance (such as cannabis or alcohol) may pose difficulties
in refraining from other substances such as alcohol or tobacco). Therefore, it is important to tailor
multi-substance treatments to specific needs when a single-substance intervention may not be effective.Biomedicines 2019, 7, x 17 of 31 
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Although the molecular basis of alcohol-cannabis interaction is not yet known, recent studies have
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3.6. Alcohol-GHBA Interactions

GHB is a natural sedative with the potential to be used as a recreational drug [209,210]. The popularity
of GHB as a drug of abuse has grown recently [211]. Alcohol has been shown to enhance the sedative
effect of GHB in humans and animals [212,213]. Co-administration of GHB and alcohol induces sedation
stronger than the sum of the sedation induced by the individual substances [214], possibly due to a
pharmacokinetic interaction resulting in an increased concentration at the site of action (Figure 19).

Biomedicines 2019, 7, x 18 of 31 

 
Figure 18. Possible epigenetic mechanisms for alcohol—cannabis interactions. Alcohol and cannabis 
both modulate CB1 and CB2 receptors, resulting in activation of the MAPK signaling pathways, that 
further activates (i) nuclear factors CREB and NF-κB, (ii) histone modifications, and (iii) DNA 
methylation mediated by the epigenetic enzymes. This leads to altered gene expression and cell 
functionality through apoptosis, oxidative stress, plasticity or immuno-modulation. 

3.6. Alcohol-GHBA Interactions 

GHB is a natural sedative with the potential to be used as a recreational drug [209,210]. The 
popularity of GHB as a drug of abuse has grown recently [211]. Alcohol has been shown to enhance the 
sedative effect of GHB in humans and animals [212,213]. Co-administration of GHB and alcohol induces 
sedation stronger than the sum of the sedation induced by the individual substances [214], possibly due 
to a pharmacokinetic interaction resulting in an increased concentration at the site of action (Figure 19). 

 
Figure 19. Pharmacokinetic mechanism of alcohol-GHB interaction. GHB is primarily metabolized to 
succinic semialdehyde (SSA) by a P450 mediated NAD(P)+-linked oxidation catalyzed by GHB 
dehydrogenase (GHBD). SSA is further metabolized to succinic acid, a citric acid cycle substrate. In case 
of alcohol-GHB co-exposure, alcohol competes with GHB for the enzyme’s binding sites, resulting in a 
decrease in GHB metabolism. However, for exogenously administered GHB, it is unclear whether co-
administration with alcohol results in increased GHB or alcohol plasma concentrations. 

To understand the effects of alcohol on the pharmacokinetics of GHB, it is important to 
understand alcohol’s interaction with the metabolic system. Studies have shown that, at lower alcohol 
concentrations, only about 10% of the consumed alcohol undergoes CYP-mediated first-pass 
metabolism in liver. Since alcohol and GBH compete for CYP2E1 (GHBD), alcohol, depending on its 
concentration, reduces GBH degradation and ensuing increase in its blood concentrations [215]. 
Chronic, heavy alcohol consumption induces the activity of CYP2E1, resulting in a decrease in GHB 
concentrations. The adverse effects related to GHB ingestion are shown in Figure 20 [216]. Overall 
adverse effects depend on the variability among users and the inherent variability in street 

Figure 19. Pharmacokinetic mechanism of alcohol-GHB interaction. GHB is primarily metabolized
to succinic semialdehyde (SSA) by a P450 mediated NAD(P)+-linked oxidation catalyzed by GHB
dehydrogenase (GHBD). SSA is further metabolized to succinic acid, a citric acid cycle substrate. In case
of alcohol-GHB co-exposure, alcohol competes with GHB for the enzyme’s binding sites, resulting in
a decrease in GHB metabolism. However, for exogenously administered GHB, it is unclear whether
co-administration with alcohol results in increased GHB or alcohol plasma concentrations.

To understand the effects of alcohol on the pharmacokinetics of GHB, it is important to understand
alcohol’s interaction with the metabolic system. Studies have shown that, at lower alcohol concentrations,
only about 10% of the consumed alcohol undergoes CYP-mediated first-pass metabolism in liver. Since
alcohol and GBH compete for CYP2E1 (GHBD), alcohol, depending on its concentration, reduces GBH
degradation and ensuing increase in its blood concentrations [215]. Chronic, heavy alcohol consumption
induces the activity of CYP2E1, resulting in a decrease in GHB concentrations. The adverse effects related
to GHB ingestion are shown in Figure 20 [216]. Overall adverse effects depend on the variability among
users and the inherent variability in street manufacturing [217]. This makes GHB a highly dangerous
drug to consume. It exhibits a steep dosage-response curve, thus, exceeding the intoxicating dose can
result in severe adverse effects occurring within 15 minutes of ingestion of GHB [218,219].
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4. Conclusions

Co-abuse of alcohol with drugs of abuse (psychostimulants (cocaine, METH and nicotine) and
inhibitors (opioids, cannabis and GHBA) and medications) is a serious health problem the society
faces today. People abuse multiple drugs possibly due to the perception of potentiated euphoric and
pleasure effects and decreased adverse subjective effects. The negative consequences of alcohol and
psychostimulant co-abuse may include a decrease in antioxidant enzymes, disruption of learning
and memory processes, cerebral hypo-perfusion, neurotransmitters depletion as well as potentiated
drug-seeking behavior. As summarized in Figure 21, alcohol activates inhibitory GABAergic and
OPergic neurons, but inhibits excitatory Gluergic neurons. Thus, alcohol additively or synergistically
augments inhibitory signaling by opioids, cannabis and GHB, but suppresses stimulatory signaling
by cocaine, METH and nicotine. Alcohol may also modify the liver CYP enzymes, thus modifying
the drugs plasma concentrations. Taken together, alcohol may modify both the pharmacokinetics and
pharmacodynamics of co-abused drugs. Therefore, alcohol-drug interaction must be considered when
developing alcoholism therapy.Biomedicines 2019, 7, x 20 of 31 
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Figure 21. Proposed mechanisms underlying alcohol’s interaction with co-abused drugs. Alcohol
(referred as alcohol in this article) is rapidly absorbed and distributed. It is metabolized to acetaldehyde
by ADH and CYP enzymes, then to acetate by ALDH. In this process, alcohol competes with the
co-administered drugs and suppresses their elimination, thus increasing the drug’s plasma concentration
and altering its pharmacokinetics (increase in Cmax and AUC, decrease in CL). Chronic alcohol exposure
activates the liver CYP enzymes, resulting in a decrease in the drug’s plasma concentrations, with
a decrease in its efficacy. Alcohol, in addition to altering pharmacokinetics of a drug, also alter its
pharmacodynamics by activating GABAergic and OPergic presynaptic neurons (A(+), but inhibiting
Gluergic presynaptic neurons (A(-)). Post-synoptically, alcohol activates GABAAR mediated influx of Cl−

ions, but inhibits AMPAR-mediated Na+ ions and NMDAR-mediated Ca2+ ions, resulting in reduced
excitability via IPSP. Therefore, alcohol may augment the effects of inhibitory drugs (opioids, cannabis
and GHB) but suppress the effects of excitatory drugs (cocaine, METH or nicotine). Chronic alcohol
exposure may have opposite effects not shown in this figure. Abbreviations: A(+): positive alcohol effects,
A(−): negative alcohol effects, VGSE: voltage-gated sodium ion (Na+) channels that may be attenuated by
alcohol’s IPSP, VGCC: voltage-gated calcium ion (Ca2+) channels that may be attenuated by alcohol’s
IPSP, GABAAR mediated Cl− channels that may be additively/synergistically activated by alcohol’s
IPSP, inhibitory neurotransmitters, excitatory. neurotransmitters,
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Abbreviations

2-AG 2-Arachidonoylglycerol
5-HT Serotonin
A(+) alcohol’s +ve effects
A(−) alcohol’s −ve effects
AA arachidonic acid
AC adenylyl cyclase
ACh Acetylcholine
AChergic ACh releasing neurons
ADH alcohol dehydrogenase
ALDH acetaldehy6de dehydrogenase
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AUC area under curve
AUD alcohol use disorder
cAMP cyclic adenosine monophosphate
CL clearance
Cmax maximum concentration
COMT catechol-O-methyl-transferase
COX Cyclooxygenase
CYP cytochrome P450
DA Dopamine
DA dopamine}
DAG Diacylglycerol
DAGL diacylglycerol lipase
DAR1 dopamine receptor 1
DAT dopamine transporter
DOR delta OPRs
DPDEP D-Pen2, D-Pen5 enkephalin, DOR agonist
EAA excitatory amino acids
eCB Endocannabinoid
eOP endogenous opioids
ERK extracellular-signal-regulated kinase
GABA γ-aminobutyric acid
GABABR GABA B receptor
GABAergic GABA releasing neurons
GHB γ-hydroxybutyric acid
GHBD GHB dehydrogenase
GIRK G protein-coupled inwardly-rectifying potassium channels
Glu Glutamate
Gluergic glutamate releasing neurons
Gly Glycine
IP3 inositol trisphosphate
KOR kappa OPRs
LDTg laterodorsal tegmental nucleus
LPS Lipopolysaccharide
METH Methamphetamine
mGluR2/3 metabolic Glu receptors 2/3
MOR mu OPRs
NAc nucleus accumbens
nAChR nicotinic ACh receptor
NAPQI N-acetyl-p-benzoquinone imine
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NE Noradrenaline
NMDA N-methyl-D-Aspartate receptors
OP Opioid
OPR opioid receptors
OPRM1 A118G variant of the MOR1
PIP2 poly inositol diphosphate
pptg pedunculopontine tegmental nucleus
SERT serotonin transporter
sOP synthetic opioids
SSA succinic semialdehyde
T elimination half-life
THC ∆9-Tetrahydrocannabinol
tmax time to Cmax

TMU 1,3,7-trimethyluric acid
U50488H KOR agonist
VGSC voltage gated sodium ion (Na+) channel
VGCC voltage gated calcium ion (Ca2+) channel
VTA ventral tegmental area
α7 and α4β2 nicotinic receptor subtypes
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